Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:18:40.339Z Has data issue: false hasContentIssue false

Nonlinear Dynamos

Published online by Cambridge University Press:  12 August 2011

David Galloway*
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper discusses nonlinear dynamos where the nonlinearity arises directly via the Lorentz force in the Navier-Stokes equation, and leads to a situation where the Lorentz force and the velocity and the magnetic field are in direct competition over substantial regions of the flow domain. Filamentary and non-filamentary dynamos are contrasted, and the concept of Alfvénic dynamos with almost equal magnetic and kinetic energies is reviewed via examples. So far these remain in the category of toy models; the paper concludes with a discussion of whether similar dynamos are likely to exist in astrophysical objects, and whether they can model the solar cycle.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Archontis, V. 2000, PhD Thesis, University of Copenhagen, Linear, Non-Linear and Turbulent dynamosGoogle Scholar
Archontis, V., Dorch, B. & Nordlund, A. 2007 A&A 472, 715Google Scholar
Braginskii, V.I. 1964 Sov. Phys. JETP 20, 726Google Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S. & Toomre, J 2010 ApJ 711, 424CrossRefGoogle Scholar
Brummell, N., Cattaneo, F. & Tobias, S. M. 2001, Fluid Dynam. Res., 28, 237Google Scholar
Cameron, R. & Galloway, D. 2006 Mon. Not. R. Astron. Soc, 365, 735CrossRefGoogle Scholar
Cameron, R. & Galloway, D. 2006 Mon. Not. R. Astron. Soc, 367, 1163Google Scholar
Cattaneo, F. 1999, ApJ, L39, 515Google Scholar
Dikpati, M. & Charbonneau, P. (1999) ApJ 518, 508CrossRefGoogle Scholar
Friedlander, S. J. & Vishik, M. M. (1995) Chaos 5, 416Google Scholar
Galanti, B. & Sulem, P. L., Pouquet, A 1992, Geophys. Astrophys. Fluid Dyn. 66, 183Google Scholar
Galloway, D. J. 2003, in: Ferriz-Mas, A. & Nunez, M. (eds.), Advances in Nonlinear Dynamos (Taylor & Francis), pp. 37Google Scholar
Galloway, D. J. & Proctor, M. R. E. 1992, Nature 356, 691CrossRefGoogle Scholar
Gibson, R. D. 1968 Q.J. Mech. Appl. Math. 21, 257CrossRefGoogle Scholar
Gilbert, A.D., Ponty, Y. & Zheligovsky, V. 2010 Geophys. Astrophys. Fluid Dyn., published electronically as DOI: 10.1080/03091929.2010.513332, paper version to appearGoogle Scholar
Krause, F. & Rädler, K. H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory (Berlin, Akademie-Verlag)Google Scholar
Matthaeus, W. H., Pouquet, A., Mininni, P. D., Dmitruk, P. & Breech, B. 2008 Phys. Rev. Lett. 100, 085003CrossRefGoogle Scholar
Parker, E. N. 1955 ApJ 122, 293CrossRefGoogle Scholar
Spiegel, E. A. 1977, in: Spiegel, E. A. & Zahn, J. P. (eds.), Problems of Stellar Convection (Springer-Verlag), 1CrossRefGoogle Scholar
Vainshtein, S. & Cattaneo, F. 1992, ApJ, 393, 199Google Scholar