Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:50:17.107Z Has data issue: false hasContentIssue false

Nonlinear and stochastic mechanisms of the solar cycle and their implications for the cycle prediction

Published online by Cambridge University Press:  23 December 2024

Jie Jiang*
Affiliation:
School of Space and Environment, Beihang University, Beijing, People’s Republic of China Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar activity shows an 11-year (quasi)periodicity with a pronounced, but limited variability of the cycle amplitudes. The properties of active region (AR) emergence play an important role in the modulation of solar cycles and are our central concern in building a model for predicting future cycle(s) in the framework of the Babcock–Leighton (BL)-type dynamo. The emergence of ARs has the property that strong cycles tend to have higher mean latitudes and lower tilt angle coefficients. Their non-linear feedbacks on the solar cycle are referred to as latitudinal quenching and tilt quenching, respectively. Meanwhile, the stochastic properties of AR emergence, e.g., rogue ARs, limit the scope of the solar cycle prediction. For physics-based prediction models of the solar cycle, we suggest that uncertainties in both the observed magnetograms assimilated as the initial field and the properties of the AR emergence should be taken into account.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Babcock, H. W. 1961, The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. apj, 133, 572.CrossRefGoogle Scholar
Bhowmik, P., Jiang, J., Upton, L., Lemerle, A., & Nandy, D. 2023, Physical Models for Solar Cycle Predictions. Space Sci. Rev., 219(5), 40.CrossRefGoogle Scholar
Cameron, R. H., Jiang, J., & Schüssler, M. 2016, Solar Cycle 25: Another Moderate Cycle? Astrophys. J. Lett., 823(2), L22.CrossRefGoogle Scholar
Cameron, R. H. & Schüssler, M. 2017, Understanding Solar Cycle Variability. Astrophys. J., 843(2), 111.CrossRefGoogle Scholar
Dasi–Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T. 2010, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys., 518, A7.CrossRefGoogle Scholar
Gnevyshev, M. N. & Ohl, A. I. 1948, On the 22-year cycle of solar activity. Living Reviews in Solar Physics, 25, 18.Google Scholar
Howe, R. 2009, Solar Interior Rotation and its Variation. Living Reviews in Solar Physics, 6(1), 1.CrossRefGoogle Scholar
Jiang, J. 2020, Nonlinear Mechanisms that Regulate the Solar Cycle Amplitude. Astrophys. J., 900(1), 19.CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Schüssler, M. 2011, The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys., 528, A82.CrossRefGoogle Scholar
Jiang, J., Cameron, R. H., & Schüssler, M. 2014, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophysical Journal, 791(1).CrossRefGoogle Scholar
Jiang, J. & Cao, J. 2018, Predicting solar surface large-scale magnetic field of Cycle 24. Journal of Atmospheric and Solar-Terrestrial Physics, 176, 3441.CrossRefGoogle Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc., 381(4), 15271542.CrossRefGoogle Scholar
Jiang, J., Hathaway, D. H., Cameron, R. H., Solanki, S. K., Gizon, L., & Upton, L. 2014, Magnetic Flux Transport at the Solar Surface. Space Sci. Rev.,.CrossRefGoogle Scholar
Jiang, J., Wang, J.-X., Jiao, Q.-R., & Cao, J.-B. 2018, Predictability of the Solar Cycle Over One Cycle. Astrophys. J., 863(2), 159.CrossRefGoogle Scholar
Jiang, J., Zhang, Z., & Petrovay, K. 2023, Comparison of physics-based prediction models of solar cycle 25. Journal of Atmospheric and Solar-Terrestrial Physics, 243, 106018.CrossRefGoogle Scholar
Jiao, Q., Jiang, J., & Wang, Z.-F. 2021, Sunspot tilt angles revisited: Dependence on the solar cycle strength. Astron. Astrophys., 653, A27.CrossRefGoogle Scholar
Karak, B. B. 2020, Dynamo Saturation through the Latitudinal Variation of Bipolar Magnetic Regions in the Sun. Astrophys. J. Lett., 901(2), L35.CrossRefGoogle Scholar
Labonville, F., Charbonneau, P., & Lemerle, A. 2019, A Dynamo-based Forecast of Solar Cycle 25. Solar Phys., 294(6), 82.CrossRefGoogle Scholar
Leighton, R. B. 1969, A Magneto-Kinematic Model of the Solar Cycle. Astrophys. J., 156, 1.CrossRefGoogle Scholar
Li, K. J., Wang, J. X., Zhan, L. S., Yun, H. S., Liang, H. F., Zhao, H. J., & Gu, X. M. 2003, On the Latitudinal Distribution of Sunspot Groups over a Solar Cycle. Solar Phys., 215(1), 99109.CrossRefGoogle Scholar
Lorenz, E. N. 1963, Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences, 20(2), 130148.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. 1965, A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321333.CrossRefGoogle Scholar
Lorenz, E. N. 1969, The predictability of a flow which possesses many scales of motion. Tellus, 21(3), 289307.CrossRefGoogle Scholar
Nandy, D. 2021, Progress in Solar Cycle Predictions: Sunspot Cycles 24-25 in Perspective. Solar Phys., 296(3), 54.CrossRefGoogle Scholar
Penza, V., Bertello, L., Cantoresi, M., Criscuoli, S., & Berrilli, F. 2023, Prediction of solar cycle 25: applications and comparison. Rendiconti Lincei. Scienze Fisiche e Naturali, 34(3), 663670.CrossRefGoogle Scholar
Pesnell, W. D. & Schatten, K. H. 2018, An Early Prediction of the Amplitude of Solar Cycle 25. Solar Phys., 293(7), 112.CrossRefGoogle Scholar
Petrovay, K. 2020, Solar cycle prediction. Living Reviews in Solar Physics, 17(1), 2.CrossRefGoogle Scholar
Petrovay, K., Nagy, M., & Yeates, A. R. 2020, Towards an algebraic method of solar cycle prediction. I. Calculating the ultimate dipole contributions of individual active regions. Journal of Space Weather and Space Climate, 10, 50.CrossRefGoogle Scholar
Solanki, S. K., Wenzler, T., & Schmitt, D. 2008, Moments of the latitudinal dependence of the sunspot cycle: a new diagnostic of dynamo models. Astron. Astrophys., 483(2), 623632.CrossRefGoogle Scholar
Svalgaard, L. 2020, Prediction of Solar Cycle 25. arXiv e-prints, arXiv:2010.02370.Google Scholar
Upton, L. A. & Hathaway, D. H. 2018, An Updated Solar Cycle 25 Prediction With AFT: The Modern Minimum. Geophys. Res. Lett., 45(16), 80918095.CrossRefGoogle Scholar
Usoskin, I. G., Solanki, S. K., Krivova, N. A., Hofer, B., Kovaltsov, G. A., Wacker, L., Brehm, N., & Kromer, B. 2021, Solar cyclic activity over the last millennium reconstructed from annual 14C data. Astron. Astrophys., 649, A141.CrossRefGoogle Scholar
Wang, Y. M. & Sheeley, N. R., J. 1991, Magnetic Flux Transport and the Sun’s Dipole Moment: New Twists to the Babcock–Leighton Model. Astrophys. J., 375, 761.CrossRefGoogle Scholar
Wang, Y. M. & Sheeley, N. R. 2009, Understanding the Geomagnetic Precursor of the Solar Cycle. Astrophys. J. Lett., 694(1), L11L15.CrossRefGoogle Scholar
Wang, Z.-F., Jiang, J., & Wang, J.-X. 2021, Algebraic quantification of an active region contribution to the solar cycle. Astron. Astrophys., 650, A87.CrossRefGoogle Scholar
Wang, Z.-F., Jiang, J., & Wang, J.-X. 2024, Algebraic quantification of an active region contribution to the solar cycle. in prep.,.Google Scholar
Weber, M. A., Fan, Y., & Miesch, M. S. 2011, The Rise of Active Region Flux Tubes in the Turbulent Solar Convective Envelope. Astrophys. J., 741(1), 11.CrossRefGoogle Scholar
Yeates, A. R., Cheung, M. C. M., Jiang, J., Petrovay, K., & Wang, Y.-M. 2023, Surface Flux Transport on the Sun. Space Sci. Rev., 219(4), 31.CrossRefGoogle Scholar