Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T16:20:10.576Z Has data issue: false hasContentIssue false

Nonlinear analysis of decimetric solar bursts

Published online by Cambridge University Press:  26 February 2010

Reinaldo R. Rosa
Affiliation:
LAC and DAS, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil email: [email protected]
Mauricio J. A. Bolzan
Affiliation:
IPD, Universidade do Vale do Paraiba, São José dos Campos, SP, Brazil email: [email protected]
Francisco C. R. Fernandes
Affiliation:
IPD, Universidade do Vale do Paraiba, São José dos Campos, SP, Brazil email: [email protected]
H. S. Sawant
Affiliation:
LAC and DAS, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil email: [email protected]
Marian Karlický
Affiliation:
Ondrejov Observatory, Czech Republic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The solar radio emissions in the decimetric frequency range (above 1 GHz) are very rich in temporal and spectral fine structures due to nonlinear processes occurring in the magnetic structures on the corresponding active regions. In this paper we characterize the singularity spectrum, f(α), for solar bursts observed at 1.6, 2.0 and 3 GHz. We interpret our findings as evidence of inhomogeneous plasma turbulence driving the underlying plasma emission process and discuss the nonlinear multifractal approach into the context of geoeffective solar active regions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aschwanden, A. 2005, Springer, Berlin, 2005Google Scholar
Bolzan, M. J. A., Rosa, R. R., & Sahai, Y. 2009, Annales Geophysicae, 27 (2), 569576CrossRefGoogle Scholar
Enescu, B., Ito, K., & Struzik, Z. 2006, Geoph. Journal International, 164 (1), 6374CrossRefGoogle Scholar
Frisch, U. 1995, in: Turbulence, Cambridge University Press, New YorkCrossRefGoogle Scholar
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., & Shraiman, B. I. 1986, Phys. Rev. A, 33, 1141CrossRefGoogle Scholar
Kuperus, M. 1976, Solar Phys., 47 (1), 7990Google Scholar
Madsen, F. R. H., Sawant, H. S., Fernandes, F. C. R., & Cecatto, J. R. 2004, Braz. J. Phys., 34 (4b)CrossRefGoogle Scholar
Mallat, S. 1989, IEEE Trans. Pat. An. Mach. Intel. 11, 674693CrossRefGoogle Scholar
Oswiecimka, P., Kwapien, J., & Drozdz, S. 2006, Phys. Rev. E, 74, 016103CrossRefGoogle Scholar
Rodrigues Neto, C., Zanandrea, A., Ramos, F. M., Rosa, R. R., Bolzan, M. J. A., S, L. D. A. 2001, Physica A, 295 (1–2), 215218CrossRefGoogle Scholar
Rosa, R. R., Karlicky, M., Veronese, T. B., Vijaykumar, N. L., Sawant, H. S., Borgazzi, A. I., Dantas, M. S., Barbosa, E. B. M., Sych, R. A., & Mendes, O. 2008, Adv. Sp. Res., 41 (5), 844851CrossRefGoogle Scholar
Struzik, Z. R. 2000, Fractals, 8, 163179.CrossRefGoogle Scholar
Tajima, T., Sakai, J., Nakajima, N., Kosugi, T., Brunel, F., & Kundu, M. R. 1987, ApJ, 321, 1031CrossRefGoogle Scholar