Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T11:19:17.110Z Has data issue: false hasContentIssue false

Non-exploding and exploding core-collapse supernova models and the multimessenger predictions

Published online by Cambridge University Press:  12 October 2020

Kei Kotake
Affiliation:
Department of Applied Physics & Research Institute of Stellar Explosive Phenomena, Fukuoka University, Jonan, Nanakuma, Fukuoka814-0180, Japan
Takami Kuroda
Affiliation:
Institute für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
Tomoya Takiwaki
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of full general relativistic (GR), three-dimensional (3D) core-collapse simulation of a massive star with multi-energy neutrino transport. Using a 70Mȯ zero-metallicity star, we show that the black-hole (BH) formation occurs at ∼ 300 ms after bounce. At a few ∼ 10 ms before the BH formation, we find that the stalled bounce shock is revived by neutrino heating from the forming hot proto-neutron star (PNS), which is aided by vigorous convection behind the shock. Our numerical results present the first evidence to validate the BH formation by the so-called fallback scenario. Furthermore we present results from a rapidly rotating core-collapse model of a 27Mȯ star that is trending towards an explosion. We point out that the correlated neutrino and gravitational-wave signatures, if detected, could provide a smoking-gun evidence of rapid rotation of the newly-born PNS.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abbott, B. P. et al. 2016, (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102CrossRefGoogle Scholar
Abbott, B. P. et al. 2016, (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 241103CrossRefGoogle Scholar
Abbott, B. P. et al. 2017, (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 118, 221101CrossRefGoogle Scholar
Abbott, B. P., Abbott, R. Abbott, T. D., et al. 2016, ApJL, 818, L22CrossRefGoogle Scholar
Abbott, B. P. et al. 2017, (LIGO Scientific Collaboration and Virgo Collaboration), Astrophys. J. 851, L35CrossRefGoogle Scholar
Abbott, B. P. et al. 2017, (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 141101CrossRefGoogle Scholar
Abbott, B. P. et al. 2017, (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119, 161101CrossRefGoogle Scholar
Abbott, B. P. et al. 2017, (LIGO Scientific Collaboration and Virgo Collaboration), ApJ 848, L12CrossRefGoogle Scholar
Abbott, B. P. et al. 2017, Classical and Quantum Gravity, 34, 044001CrossRefGoogle Scholar
Andresen, H. Müller, B., Müller, E., Janka, H.-Th. 2017, MNRAS, 468, 2032CrossRefGoogle Scholar
Aso, Y. Michimura, Y., Somiya, K., et al. 2013, Phys. Rev. D, 88, 043007CrossRefGoogle Scholar
Baumgarte, T. W. & Shapiro, S. L. 1999, Phys. Rev. D, 59, 024007CrossRefGoogle Scholar
Belczynski, K. Dominik, M., Bulik, T., et al. 2010, ApJL, 715, L138CrossRefGoogle Scholar
Buras, R. Janka, H.-T., Rampp, M., & Kifonidis, K. 2006, A&A, 457, 281Google Scholar
Chan, C. Müller, B., Heger, A., Pakmor, R., & Springel, V. 2018, ApJL, 852, L19CrossRefGoogle Scholar
Fischer, T. Hempel, M., et al. 2014, European Physical Journal A, 50, 46CrossRefGoogle Scholar
Foglizzo, T. Kazeroni, R., Guilet, J., et al. 2015, PASA, 32, e009CrossRefGoogle Scholar
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152Google Scholar
Hayama, K. Kuroda, T., Kotake, K., & Takiwaki, T. 2018, MNRAS, 477, L96CrossRefGoogle Scholar
Hild, S. Freise, A., Mantovani, M., et al. 2009, Classical and Quantum Gravity, 26, 025005CrossRefGoogle Scholar
Hild, S. Abernathy, M., Acernese, F., et al. 2011, Classical and Quantum Gravity, 28, 094013CrossRefGoogle Scholar
Horiuchi, S. Sumiyoshi, K., Nakamura, K., et al. 2018, MNRAS, 475, 1363CrossRefGoogle Scholar
Janka, H.-T., Melson, T., & Summa, A. 2016, Annual Review of Nuclear and Particle Science, 66, 341CrossRefGoogle Scholar
Kawahara, H. Kuroda, T., Takiwaki, T. Hayama, K., & Kotake, K. 2018, ApJ, 867, 126CrossRefGoogle Scholar
Kinugawa, T. Nakano, H., & Nakamura, T. 2016, Progress of Theoretical and Experimental Physics, 2016, 103E01CrossRefGoogle Scholar
Kotake, K. Sumiyoshi, K., Yamada, S., et al. 2012, Progress of Theoretical and Experimental Physics, 2012, 01A301CrossRefGoogle Scholar
Kotake, K. 2013, Comptes Rendus Physique, 14, 318CrossRefGoogle Scholar
Kotake, K. Takiwaki, T., Fischer, T. Nakamura, K., & Martnez-Pinedo, G. 2018, ApJ, 853, 170CrossRefGoogle Scholar
Kuroda, T. Kotake, K., & Takiwaki, T. 2012, ApJ, 755, 11CrossRefGoogle Scholar
Kuroda, T. Kotake, K., Takiwaki, T., & Thielemann, F.-K. 2018, MNRAS, 477, L80CrossRefGoogle Scholar
Langer, N. 2012, Annu. Rev. Astron. Astrophys., 50, 107CrossRefGoogle Scholar
Liebendörfer, M., Messer, O. E. B., Mezzacappa, A., et al. 2004, ApJS, 150, 263CrossRefGoogle Scholar
Liebendörfer, M., Whitehouse, S. C., & Fischer, T. 2009, ApJ, 698, 1174CrossRefGoogle Scholar
Lunardini, C. 2009, Phys. Rev. Lett., 102, 231101CrossRefGoogle Scholar
Melson, T. Kress, D., & Janka, H.-T. 2020, ApJ, 891, 1CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, GravitationGoogle Scholar
Mirizzi, A. Tamborra, I., Janka, H.-T., et al. 2016, Nuovo Cimento Rivista Serie, 39, 1Google Scholar
Müller, B., Janka, H.-T., & Marek, A. 2013, ApJ, 766, 43CrossRefGoogle Scholar
Murphy, J. W., Ott, C. D., & Burrows, A. 2009, ApJ, 707, 1173CrossRefGoogle Scholar
Nagakura, H. Burrows, A., Radice, D. Vartanyan, D., et al. 2019, MNRAS, 490, 4622CrossRefGoogle Scholar
Pan, K.-C., Liebendörfer, M., Couch, S. M., & Thielemann, F.-K. 2018, ApJ, 857, 13CrossRefGoogle Scholar
Shibata, M. & Nakamura, T. 1995, Phys. Rev. D, 52, 5428CrossRefGoogle Scholar
Shibata, M. Kiuchi, K., Sekiguchi, Y., & Suwa, Y. 2011, Progress of Theoretical Physics, 125, 1255CrossRefGoogle Scholar
Sumiyoshi, K. Yamada, S., & Suzuki, H. 2007, ApJ, 667, 382CrossRefGoogle Scholar
Takiwaki, T. & Kotake, K. 2018, MNRAS 475, L91CrossRefGoogle Scholar
Takiwaki, T. Kotake, K., & Suwa, Y. 2016, MNRAS, 461, L112CrossRefGoogle Scholar
Takahashi, K. Umeda, H., & Yoshida, T. 2014, ApJ, 794, 40CrossRefGoogle Scholar
Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Reviews of Modern Physics, 74, 1015CrossRefGoogle Scholar