Published online by Cambridge University Press: 23 April 2012
Various processes can lead to non-conservative evolution in binary stars. Under conservative mass transfer, both the total mass and the orbital angular momentum of the system are conserved. Thus, the transfer of angular momentum between the orbit and the spins of the stars can represent one such effect. Stars generally lose mass and angular momentum in a stellar wind so, even with no interaction, evolution is non-conservative. Indeed, a strong wind can actually drive mass transfer. During Roche lobe overflow itself, mass transfer becomes non-conservative when the companion cannot accrete all the material transferred by the donor. In some cases, material is simply temporarily stored in an accretion disc. In others, the companion may swell up and initiate common envelope evolution. Often the transferred material carries enough angular momentum to spin the companion up to break-up, at which point it could not accrete more. We investigate how this is alleviated by non-conservative evolution.