Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T22:49:46.012Z Has data issue: false hasContentIssue false

The Ni I lines in the solar spectrum

Published online by Cambridge University Press:  05 July 2012

Mariela C. Vieytes
Affiliation:
Instituto de Astronomía y Física del Espacio Universidad Nacional de Tres de Febrero, email: [email protected]
Pablo J. D. Mauas
Affiliation:
Instituto de Astronomía y Física del Espacio Universidad de Buenos Aires, Buenos Aires, Argentina email: [email protected]
Juan M. Fontenla
Affiliation:
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stratosphere is the region where the ozone chemistry is important for the balance of energy, and radiation in the near UV plays a fundamental role in the creation and destruction of ozone. However, the radiation in this range of wavelength has not been very well modeled. One of the most important elements, according to its abundance in the solar atmosphere, that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å, is neutral nickel (Ni I). In this work we improve the atomic model of this element, taking into account 490 lines over the spectrum. We solve these lines in NLTE using the Solar Radiation Physical Modeling (SRPM) program and compare the results with observation of the quiet sun spectrum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Anderson, G. & Hall, L. 1989, JGR, 94, D56435Google Scholar
Brasseur, G. (ed.) 1997, NATO ASI Series: The Stratosphere and its role in the Climate System, 54, 1Google Scholar
Brault, J. & Neckel, H. 1999, Sol. Phys., 184, 421Google Scholar
Bruls, J. 1993, A&A, 269, 509Google Scholar
Fontenla, J., Curdt, W., Haberreiter, M., Harder, J., & Tian, H. 2009, ApJ, 707, 482CrossRefGoogle Scholar
Fontenla, J., Harder, J., Livingston, W., Snow, M., & Woods, T. 2011, JGR, 116, D20108CrossRefGoogle Scholar
Hall, L. & Anderson, G. 1991, JGR, 96, D712927Google Scholar
Harder, J., Thuillier, G., Richard, E., Brown, K., Lykke, M., Snow, W., McClintock, J., Fontenla, J., Woods, T., & Pilewskie, P. 2010, Sol. Phys., 263, 3CrossRefGoogle Scholar
Ralchenko, Yu., Kramida, A. E., & Reader, J., and NIST ASD Team 2011, NIST Atomic Spectra Database (ver. 4.1.0), [Online]. Available: http://physics.nist.gov/asd [2011, November 4]. National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
Thuillier, G., Herse, M., Labs, D., Foujols, T., Peetermans, W., Guillotay, D., Simon, P., & Mandel, H. 2003, Sol. Phys., 214, 1CrossRefGoogle Scholar
Vernazza, J., Avrett, E., & Loeser, R. 1981, ApJS, 45, 635CrossRefGoogle Scholar