No CrossRef data available.
Published online by Cambridge University Press: 21 February 2013
The luminous accretion flares from tidally disrupted stars represent a powerful probe of the presence of supermassive black holes (SMBHs) in otherwise non-active galaxies, of accretion physics and BH spin, of jet formation, and relativistic effects. Further, the reprocessing of the continuum radiation of the flare into IR, optical and UV emission lines provides us with multiple new diagnostics of the properties of any gaseous material in the vicinity of the SMBH and in the host galaxy itself. While first events were discovered in the course of the ROSAT all-sky survey in X-rays, the last few years have seen the detection of several more flares, including in the UV, optical and radio band and via their emission-line “echoes”. A wealth of applications will become feasible in upcoming years, once flares are detected in large numbers in current and future sky surveys.