Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-04T19:39:21.782Z Has data issue: false hasContentIssue false

A new galaxy Spectral Energy Distribution model with the evolution of dust consistent with chemical evolution

Published online by Cambridge University Press:  10 June 2020

Kazuki Y. Nishida
Affiliation:
Nagoya University, Japan
Tsutomu T. Takeuchi
Affiliation:
Nagoya University, Japan
Takuma Nagata
Affiliation:
Nagoya University, Japan
Ryosuke S. Asano
Affiliation:
Nagoya University, Japan
Akio K. Inoue
Affiliation:
Osaka Sangyo University, Japan Waseda University, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The spectral energy distribution (SED) model should treat the evolution of a galaxy from its birth. Dust in galaxies affects the formation and evolution of galaxies in various ways. For example, dust grains scatter and absorb stellar emitted ultraviolet (UV) photons and re-emit the radiation at infrared (IR) wavelengths. In this work, we construct a galaxy SED model based on our dust evolution model (Asano et al. 2013a,b, 2014) with a rigorous treatment of the chemical evolution. To reduce the computational cost, we adopt mega-grain approximation (MGA; (MGA; Inoue, 2005). MGA regards a high density dusty region as a huge size (10 pc) dust grain for calculating dust scattering. In this approximation, we can solve the radiative transfer easily and provide SEDs and attenuation curves of galaxies. This model can be used to fit any galaxy in the wavelength range of 10 nm-3 mm.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Asano, S. R., Takeuchi, T. T., Hirashita, H., & Inoue, A. K. 2013a, EP&S 65, 213Google Scholar
Asano, R. S., Takeuchi, T. T., Hirashita, H., & Nozawa, T. 2013b, MNRAS 432, 63710.1093/mnras/stt506CrossRefGoogle Scholar
Asano, R. S., Takeuchi, T. T., Hirashita, H., & Nozawa, T. 2014, MNRAS 440, 13410.1093/mnras/stu208CrossRefGoogle Scholar
Da Cunha, E, Charlot, S, & Elbaz, D 2008, MNRAS 5, 81Google Scholar
Draine, T. B. & Lee, M. H. 1984, ApJ 285, 89CrossRefGoogle Scholar
Draine, T. B. 2003, ARA&A, 41, 24110.1146/annurev.astro.41.011802.094840CrossRefGoogle Scholar
Fioc, M. & Rocca-Volmerange, B. 1999, arXiv e-printsGoogle Scholar
Henyey, C. L. & Greenstein, L. J 1941, ApJ 93, 7010.1086/144246CrossRefGoogle Scholar
Inoue, A. K. 2005, MNRAS 359, 17110.1111/j.1365-2966.2005.08890.xCrossRefGoogle Scholar
Laor, A. & Draine, T. B. 1993, ApJ 402, 44110.1086/172149CrossRefGoogle Scholar
Li, A. & Draine, T. B. 2001, ApJ 554, 77810.1086/323147CrossRefGoogle Scholar
Salpeter, E. E 1955, ApJ 121, 16110.1086/145971CrossRefGoogle Scholar
Salpeter, M. 1959, ApJ 129, 24310.1086/146660CrossRefGoogle Scholar
Városi, F. & Dwek, E. 1999, ApJ 463, 681Google Scholar