Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T02:42:31.187Z Has data issue: false hasContentIssue false

Near-Infrared Spectroscopy of the Diffuse Galactic Emission

Published online by Cambridge University Press:  05 March 2015

T. Onaka
Affiliation:
Department of Astronomy, The University of Tokyo, Tokyo 113-0033, Japan email: [email protected]
I. Sakon
Affiliation:
Department of Astronomy, The University of Tokyo, Tokyo 113-0033, Japan email: [email protected]
R. Ohsawa
Affiliation:
Department of Astronomy, The University of Tokyo, Tokyo 113-0033, Japan email: [email protected]
T. I. Mori
Affiliation:
Department of Astronomy, The University of Tokyo, Tokyo 113-0033, Japan email: [email protected]
H. Kaneda
Affiliation:
Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
M. Tanaka
Affiliation:
Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
Y. Okada
Affiliation:
I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany
F. Boulanger
Affiliation:
Institut d'Astrophysique Spatiale (IAS), UMR 8617, CNRS & Université Paris-Sud 11, Bâtiment 121, 91405 Orsay Cedex, France
C. Joblin
Affiliation:
Université de Toulouse, UPS-OMP, IRAP & CNRS, IRAP, 31028 Toulouse Cedex 4, France
P. Pilleri
Affiliation:
Centre de Astrobiología (INTA-CSIC), 28850 Torrejón de Ardoz, Spain & Observatorio Astronómico Nacional, Apdo. 112, 28803 Alcalá de Henares, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The near-infrared (NIR) spectral range (2–5 μm) contains a number of interesting features for the study of the interstellar medium. In particular, the aromatic and aliphatic components in carbonaceous dust can be investigated most efficiently with the NIR spectroscopy. We analyze NIR spectra of the diffuse Galactic emission taken with the Infrared Camera onboard AKARI and find that the aliphatic to aromatic emission band ratio decreases toward the ionized gas, which suggests processing of the band carriers in the ionized region.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Boulanger, F., Onaka, T., Pilleri, P., & Joblin, C. 2011, EAS Publ. Ser. 46, 399Google Scholar
Joblin, C., Tielens, A. G. G. M., Allamandola, L. J., & Geballe, T. R. 1996, ApJ 458, 610Google Scholar
Jones, A. P. 2012, A&A 540, A2Google Scholar
Kaneda, H., Koo, B.-C., Onaka, T., & Takahashi, H. 2009, Adv. Sp. Res. 44, 1038CrossRefGoogle Scholar
Kwok, S. & Zhang, Y. 2011, Nature 479, 80Google Scholar
Lee, H.-G., Moon, D.-S., Koo, B.-C., et al. 2011, ApJ 740, 31CrossRefGoogle Scholar
Mori, T. I., Sakon, I., Onaka, T., Kaneda, H., Umehata, H., & Ohsawa, R., 2012, ApJ 744, 68Google Scholar
Murakami, H., Baba, H., Barthel, P., et al. 2007, PASJ 59, S369CrossRefGoogle Scholar
Ohyama, Y., Onaka, T., Matsuhara, H., et al. 2007, PASJ 59, S411Google Scholar
Onaka, T., Matsuhara, H., Wada, T., et al. 2007, PASJ 59, S401Google Scholar
Onaka, T., Matsuhara, H., Wada, T., et al. 2010, Proc. of SPIE 7731, 77310MCrossRefGoogle Scholar
Onaka, T., Sakon, I., Ohsawa, R., et al. 2011, EAS Publ. Ser. 46, 55Google Scholar
Peeters, E., Allamandola, L. J., Bauschlicher, C. W. Jr., et al. 2004, ApJ 604, 252Google Scholar
Rho, J., Onaka, T., Cami, J., & Reach, W. T. 2012, ApJ 747, L6CrossRefGoogle Scholar
Shimonishi, T., Onaka, T., Kato, D., et al. 2010, A&A 514, A12Google Scholar