Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T15:20:53.775Z Has data issue: false hasContentIssue false

The nature of running penumbral waves revealed

Published online by Cambridge University Press:  01 September 2007

D. S. Bloomfield
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany email: [email protected]; [email protected]; [email protected]
A. Lagg
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany email: [email protected]; [email protected]; [email protected]
S. K. Solanki
Affiliation:
Max Planck Institut für Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany email: [email protected]; [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We seek to clarify the nature of running penumbral (RP) waves: are they chromospheric trans-sunspot waves or a visual pattern of upward-propagating waves? Full Stokes spectropolarimetric time series of the photospheric Sii10827 Å line and the chromospheric Hei10830 Å multiplet were inverted using a Milne-Eddington code. Spatial pixels were paired between the outer umbral/inner penumbral photosphere and the penumbral chromosphere using inclinations retrieved by the inversion and the dual-height pairings of line-of-sight velocity time series were studied for signatures of wave propagation using a Fourier phase difference analysis. The dispersion relation for radiatively cooling acoustic waves, modified to incorporate an inclined propagation direction, fits well the observed phase differences between the pairs of photospheric and chromospheric pixels. We have thus demonstrated that RP waves are in effect low-β slow-mode waves propagating along the magnetic field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bloomfield, D. S., Lagg, A., & Solanki, S. K. 2007, ApJ, 671, 1005CrossRefGoogle Scholar
Brynildsen, N., Maltby, P., Fredvik, T., & Kjeldseth-Moe, O. 2002, Solar Phys., 207, 259CrossRefGoogle Scholar
Centeno, R., Collados, M., & Trujillo Bueno, J. 2006, ApJ, 640, 1153CrossRefGoogle Scholar
Christopoulou, E. B., Georgakilas, A. A., & Koutchmy, S. 2000, A&A, 354, 305Google Scholar
Christopoulou, E. B., Georgakilas, A. A., & Koutchmy, S. 2001, A&A, 375, 617Google Scholar
Georgakilas, A. A., Christopoulou, E. B., & Koutchmy, S. 2000, A&A, 363, 306Google Scholar
Giovanelli, R. G. 1972, Solar Phys., 27, 71CrossRefGoogle Scholar
Lagg, A., Woch, J., Krupp, N., & Solanki, S. K. 2004, A&A, 414, 1109Google Scholar
Marsh, M. S., & Walsh, R. W. 2006, ApJ, 643, 540CrossRefGoogle Scholar
Martínez Pillet, V., Collados, M., Sánchez Almeida, J., et al. 1999, in: Rimmele, T. R., Balasubramaniam, K. S., & Radick, R. R. (eds.), High Resolution Solar Physics: Theory, Observations, and Techniques, ASP Conf. Ser., 183, 264Google Scholar
Tziotziou, K., Tsiropoula, G., Mein, N., & Mein, P. 2006, A&A, 456, 689Google Scholar
Tziotziou, K., Tsiropoula, G., Mein, N., & Mein, P. 2007, A&A, 463, 1153Google Scholar
Zirin, H., & Stein, A. 1972, ApJ, 178, L85Google Scholar