Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T01:31:26.828Z Has data issue: false hasContentIssue false

Nature and physical properties of gas-mass selected galaxies using integral field spectroscopy

Published online by Cambridge University Press:  04 June 2020

Leindert A. Boogaard*
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, NL-2300RALeiden, The Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mapping the molecular gas content of the universe is key to our understanding of the build-up of galaxies over cosmic time. Spectral line scans in deep fields, such as the Hubble Ultra Deep Field (HUDF), provide a unique view on the cold gas content out to high redshift. By conducting ‘spectroscopy-of-everything’, these flux-limited observations are sensitive to the molecular gas in galaxies without preselection, revealing the cold gas content of galaxies that would not be selected in traditional studies.

In order to capitalize on the molecular gas observations, knowledge about the physical conditions of the galaxies detected in molecular gas, such as their interstellar medium conditions, is key. Fortunately, deep surveys with integral-field spectrographs are providing an unprecedented view of the galaxy population, providing redshifts and measurements of restframe UV/optical lines for thousands of galaxies.

We present the results from the synergy between the ALMA Spectroscopic Survey of the HUDF (ASPECS), with deep integral field spectroscopy from the MUSE HUDF survey and multi-wavelength data. We discuss the nature of the galaxies detected in molecular gas without preselection and their physical properties, such as star formation rate and metallicity. We show how the combination of ALMA and MUSE integral field spectroscopy can constrain the physical properties in galaxies located around the main sequence during the peak of galaxy formation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aravena, M., Decarli, R., Gónzalez-López, J., et al. 2019, ApJ, 882, 136CrossRefGoogle Scholar
Bacon, R., Accardo, M., Adjali, L., et al. 2010, in Proc. SPIE, ed. McLean, I. S., Ramsay, S. K., & Takami, H., Vol. 7735, 773508Google Scholar
Bacon, R., Conseil, S., Mary, D., et al. 2017, A&A, 608, A1Google Scholar
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARAA, 51, 207CrossRefGoogle Scholar
Boogaard, L. A., Brinchmann, J., Bouché, N., et al. 2018, A&A, 608, A10Google Scholar
Boogaard, L. A., Decarli, R., González-López, J., et al. 2019, ApJ, 882, 14010.3847/1538-4357/ab3102CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151CrossRefGoogle Scholar
Carilli, C. L., & Walter, F. 2013, ARAA, 51, 1CrossRefGoogle Scholar
Daddi, E., Bournaud, F., Walter, F., et al. 2010, ApJ, 713, 686CrossRefGoogle Scholar
Daddi, E., Dannerbauer, H., Liu, D., et al. 2015, A&A, 577, A46Google Scholar
Decarli, R., Walter, F., Carilli, C., et al. 2014, ApJ, 782, 78CrossRefGoogle Scholar
Decarli, R., Walter, F., Gónzalez-López, J., et al. 2019, ApJ, 882, 138CrossRefGoogle Scholar
González-López, J., Decarli, R., Pavesi, R., et al. 2019, ApJ, 882, 139CrossRefGoogle Scholar
Inami, H., Bacon, R., Brinchmann, J., et al. 2017, A&A, 608, A2Google Scholar
Madau, P., & Dickinson, M. 2014, ARAA, 52, 41510.1146/annurev-astro-081811-125615CrossRefGoogle Scholar
Maiolino, R., Nagao, T., Grazian, A., et al. 2008, A&A, 488, 463Google Scholar
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJ, 660, L43CrossRefGoogle Scholar
Pavesi, R., Sharon, C. E., Riechers, D. A., et al. 2018, ApJ, 864, 49CrossRefGoogle Scholar
Popping, G., Pillepich, A., Somerville, R. S., et al. 2019, ApJ, 882, 137CrossRefGoogle Scholar
Riechers, D. A., Pavesi, R., Sharon, C. E., et al. 2019, ApJ, 872, 7CrossRefGoogle Scholar
Schreiber, C., Pannella, M., Elbaz, D., et al. 2015, A&A, 575, A74Google Scholar
Silverman, J. D., Rujopakarn, W., Daddi, E., et al. 2018, ApJ, 867, 92CrossRefGoogle Scholar
Tacconi, L. J., Genzel, R., Saintonge, A., et al. 2018, ApJ, 853, 179CrossRefGoogle Scholar
Walter, F., Decarli, R., Sargent, M., et al. 2014, ApJ, 782, 79CrossRefGoogle Scholar
Walter, F., Decarli, R., Aravena, M., et al. 2016, ApJ, 833, 67CrossRefGoogle Scholar
Whitaker, K. E., Franx, M., Leja, J., et al. 2014, ApJ, 795, 104CrossRefGoogle Scholar
Zahid, H. J., Dima, G. I., Kudritzki, R.-P., et al. 2014, ApJ, 791, 130CrossRefGoogle Scholar