Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T01:52:40.080Z Has data issue: false hasContentIssue false

Multi-Wavelength Jet Studies in Cataclysmic Variables and Super-Luminous Supernovæ

Published online by Cambridge University Press:  29 August 2019

D. L. Coppejans*
Affiliation:
CIERA and Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Astrophysical jets have been detected in objects as diverse as protostellar objects and supermassive black holes, yet we still have not answered the key question of what system properties are necessary to launch a jet. This talk described multi-wavelength time-domain studies to determine if two classes of objects at opposite ends of the energy scale are launching jets. First, Cataclysmic Variables (binaries with mass accretion rates of ≤ 10−8 My−1) were previously thought not to launch jets, and have been used to constrain jet launching models. Nevertheless, recent radio observations have indicated a jet in one system, and have shown that that system is not unique. As regards the other end of the energy scale, we still do not know if the most powerful stellar explosions (Super-Luminous Supernovæ) launch jets. Recent improvements in sensitivity (particularly at radio wavelengths), higher-cadence transient surveys, significantly improved telescope response times and longer-term monitoring have led to substantial advances in these fields. The talk discussed how we are using multi-wavelength studies (with different cadences and coverage times) of these two extremely different classes of object to determine if they launch jets, thereby to constrain the properties necessary to do so.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Barrett, P. E., Dieck, C., Beasley, A. J., Singh, K. P., & Mason, P. A. 2017, AJ, 154, 252CrossRefGoogle Scholar
Benz, A. O., Fuerst, E., & Kiplinger, A. L. 1983, Nature, 302, 45CrossRefGoogle Scholar
Benz, A. O., & Guedel, M. 1989, A&A, 218, 137Google Scholar
Bloemen, S., 2016, Proc. SPIE, 9906Google Scholar
Brocksopp, C., Sokoloski, J. L., Kaiser, C., Richards, A. M., Muxlow, T. W. B., & Seymour, N. 2004, MNRAS, 347, 430CrossRefGoogle Scholar
Chomiuk, L., et al. 2011, ApJ, 743, 114CrossRefGoogle Scholar
Coppejans, D. L., Körding, E. G., Miller-Jones, J. C. A., Rupen, M. P., Knigge, C., Sivakoff, G. R., & Groot, P. J. 2015, MNRAS, 451, 3801CrossRefGoogle Scholar
Coppejans, D. L., et al. 2016, MNRAS, 463, 2229CrossRefGoogle Scholar
Coppejans, D. L., et al. 2017, arXiv:1711.03428Google Scholar
Dexter, J., & Kasen, D. 2013, ApJ, 772, 30CrossRefGoogle Scholar
Fender, R. P., & Belloni, T. M. 2012, Science, 337, 540CrossRefGoogle Scholar
Fender, R., et al. 2017, arXiv:1711.04132Google Scholar
Gal-Yam, A., et al. 2009, Nature, 462, 624CrossRefGoogle Scholar
Kasen, D., & Bildsten, L. 2010, ApJ, 717, 245CrossRefGoogle Scholar
Körding, E., Rupen, M., Knigge, C., Fender, R., Dhawan, V., Templeton, M., & Muxlow, T. 2008, Science, 320, 1318CrossRefGoogle Scholar
Körding, E. G., Knigge, C., Tzioumis, T., & Fender, R. 2011, MNRAS, 418, L129CrossRefGoogle Scholar
Margutti, R., et al. 2017, arXiv:1711.03428Google Scholar
Miller-Jones, J. C. A., et al. 2011, in: Romero, G. E., Sunyaev, R. A., & Belloni, T. (eds.), in Jets at All Scales, Proc. IAUS 275 (CUP, Cambridge, UK), p. 224Google Scholar
Miller-Jones, J. C. A., Sivakoff, G. R., Knigge, C., Köding, E. G., Templeton, M., & Waagen, E. O. 2013, Science, 340, 950CrossRefGoogle Scholar
Metzger, B. D., Margalit, B., Kasen, D., & Quataert, E. 2015, MNRAS, 454, 3311CrossRefGoogle Scholar
Mooley, K. P., et al. 2017, MNRAS, 467, L31CrossRefGoogle Scholar
Nicholl, M., et al. 2013, Nature, 502, 346CrossRefGoogle Scholar
Quimby, R. M., et al. 2011, Nature, 474, 487CrossRefGoogle Scholar
Roth, N., Kasen, D., Guillochon, J., & Ramirez-Ruiz, E. 2016, ApJ, 827, 3CrossRefGoogle Scholar
Russell, T. D. et al. 2016, MNRAS, 460, 3720CrossRefGoogle Scholar
Smith, N., & McCray, R. 2007, ApJ, 671, L17CrossRefGoogle Scholar
Soker, N., & Lasota, J.-P. 2004, A&A, 422, 1039Google Scholar
Sokoloski, J. L., Rupen, M. P., & Mioduszewski, A. J. 2008, ApJ, 685, L137CrossRefGoogle Scholar
Terreran, G., et al. 2017, Nature Astronomy, 1, 713CrossRefGoogle Scholar
Turner, K. C. 1985, in: Hjellming, R. M., & Gibson, D. M. (eds.), Radio Stars, (ASSL 116, Reidel, Dordrecht), p. 283CrossRefGoogle Scholar
Warner, B. 1995, Cambridge Astrophysics Series, 28Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390CrossRefGoogle Scholar
Woosley, S. E. 2010, ApJ, 719, L204CrossRefGoogle Scholar
Yan, L., et al. 2015, ApJ, 814, 108CrossRefGoogle Scholar