Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:53:24.922Z Has data issue: false hasContentIssue false

Multifrequency VLBI follow up study of strong γ-ray flares in the blazars 3C273 and 3C279

Published online by Cambridge University Press:  24 March 2015

Mikhail M. Lisakov
Affiliation:
Astro Space Center of Lebedev Physical Institute, 84/32 Profsoyuznaya st., Moscow, 117997, Russia email: [email protected], [email protected]
Yuri Y. Kovalev
Affiliation:
Astro Space Center of Lebedev Physical Institute, 84/32 Profsoyuznaya st., Moscow, 117997, Russia email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present multifrequency VLBI observations of the blazars 3C273 and 3C279 after detecting strong γ-ray flares in both of them. 3C273 exhibited a prominent flare in γ-rays in September 2009 which was followed by a strong flare in the 7 mm VLBI core and emergence of a new feature in the parsec scale jet. We have used time delay between flares in different wavebands together with kinematic analysis to determine that the γ-ray emission zone in 3C273 is located 3.6-5.3 pc upstream from the apparent 7 mm core. We have also analyzed frequency dependent core position to measure a deprojected distance between 7 mm core and the true base of the jet: 1-6 pc for 3C273 and 1-3 pc for 3C279, depending on observing epoch. For 3C279 light curve analysis did not give a robust γ-radio delay because there were too many overlapping flares in this source during considered period.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJ, 714, L73CrossRefGoogle Scholar
Agudo, I., Jorstad, S. G., Marscher, A. P., et al. 2011, ApJ, 726, LL13CrossRefGoogle Scholar
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071CrossRefGoogle Scholar
Ghirlanda, G., Ghisellini, G., Tavecchio, F., et al. 2011, MNRAS, 413, 852CrossRefGoogle Scholar
Jorstad, S. G., Marscher, A. P., Larionov, V. M., et al. 2010, AJ, 715, 362CrossRefGoogle Scholar
Jorstad, S. G., Marscher, A. P., Smith, P. S., et al. 2013, ApJ, 773, 147CrossRefGoogle Scholar
Kovalev, Y. Y., Aller, H. D., Aller, M. F., et al. 2009, ApJ, 696, L17CrossRefGoogle Scholar
Kovalev, Y. Y., Lobanov, A. P., Pushkarev, A. B., & Zensus, J. A. 2008, A&A, 483, 759Google Scholar
Kutkin, A. M., Sokolovsky, K. V., Lisakov, M. M., et al. 2014, MNRAS, 437, 3396CrossRefGoogle Scholar
Lister, M. L., Aller, H. D., Aller, M. F., et al. 2009, AJ, 137, 3718CrossRefGoogle Scholar
Lobanov, A. P. 1998, A&A, 330, 79Google Scholar
Marscher, A. P., Jorstad, S. G., Larionov, V. M., et al. 2010, ApJ, 710, L126CrossRefGoogle Scholar
Pushkarev, A. B., Kovalev, Y. Y., & Lister, M. L. 2010, ApJ, 722, L7CrossRefGoogle Scholar
Pushkarev, A. B., Hovatta, T., Kovalev, Y. Y., et al. 2012, A&A, 545, A113Google Scholar
Ramakrishnan, V., León-Tavares, J., Rastorgueva-Foi, E. A., et al. 2014, MNRAS, 445, 1636CrossRefGoogle Scholar
Rani, B., Krichbaum, T. P., Marscher, A. P., et al. 2014, A&A, 571, L2Google Scholar
Schinzel, F. K., Lobanov, A. P., Taylor, G. B., et al. 2012, A&A, 537, A70Google Scholar
Shepherd, M. C. 1997, Astronomical Data Analysis Software and Systems VI, 125, 77Google Scholar
Sokolovsky, K. V., Kovalev, Y. Y., Pushkarev, A. B., & Lobanov, A. P. 2011, A&A, 532, A38Google Scholar
Tavecchio, F., Ghisellini, G., Bonnoli, G., & Ghirlanda, G. 2010, MNRAS, 405, L94CrossRefGoogle Scholar