Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:24:44.784Z Has data issue: false hasContentIssue false

Monte Carlo modeling of globular star clusters: many primordial binaries and IMBH formation

Published online by Cambridge University Press:  07 March 2016

Mirek Giersz
Affiliation:
Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland emails: [email protected]
Nathan Leigh
Affiliation:
Department of Physics, University of Alberta, CCIS 4-183, Edmonton, AB T6G 2E1, Canada
Michael Marks
Affiliation:
Helmholtz-Institut für Strahlen- und Kernphysik, Nussallee 14-16, D-53115, Bonn, Germany
Arkadiusz Hypki
Affiliation:
Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland emails: [email protected]
Abbas Askar
Affiliation:
Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland emails: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We will discuss the evolution of star clusters with a large initial binary fraction, up to 95%. The initial binary population is chosen to follow the invariant orbital-parameter distributions suggested by Kroupa (1995). The Monte Carlo MOCCA simulations of star cluster evolution are compared to the observations of Milone et al. (2012) for photometric binaries. It is demonstrated that the observed dependence on cluster mass of both the binary fraction and the ratio of the binary fractions inside and outside of the half mass radius are well recovered by the MOCCA simulations. This is due to a rapid decrease in the initial binary fraction due to the strong density-dependent destruction of wide binaries described by Marks, Kroupa & Oh (2011). We also discuss a new scenario for the formation of intermediate mass black holes in dense star clusters. In this scenario, intermediate mass black holes are formed as a result of dynamical interactions of hard binaries containing a stellar mass black hole, with other stars and binaries. We will discuss the necessary conditions to initiate the process of intermediate mass black hole formation and the dependence of its mass accretion rate on the global cluster properties.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Baumgardt, H., Makino, J., Hut, P., McMillan, S., & Portegies Zwart, S. 2003 ApJ (Letters), 589, L25Google Scholar
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407Google Scholar
De Marchi, G., Paresce, F., & Pulone, L. 2007, ApJ (Letters), 656, L65Google Scholar
Fregeau, J. M., Cheung, P., Portegies Zwart, S. F. & Rasio, F. A. 2004, MNRAS, 352, 1Google Scholar
Fukushige, T. & Heggie, D. C. 2000, MNRAS, 318, 753Google Scholar
Giersz, M., Heggie, D. C., Hurley, J. R., & Hypki, A. 2013, MNRAS, 431, 2184Google Scholar
Gürkan, M. A., Freitag, M., & Rasio, F. A. 2004, ApJ, 604, 632Google Scholar
Harris, W. E. 1996, AJ. 112, 1487 (2010 update)Google Scholar
Hénon, M. H. 1971, Ap&SS, 14, 151Google Scholar
Hurley, J. R., Pols, O. R. & Tout, C. A. 2000, MNRAS, 315, 543Google Scholar
Hurley, J. R., Tout, C. A. & Pols, O. R. 2002, MNRAS, 329, 897Google Scholar
Hypki, A. & Giersz, M. 2013, MNRAS, 429, 1221Google Scholar
Kroupa 1995, MNRAS, 277, 1507CrossRefGoogle Scholar
Kroupa 2008, MNRAS, 322, 231Google Scholar
Kroupa, P. & Petr-Gotzens, M. G. 2011, A&A, 529, A92Google Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545Google Scholar
Kroupa, P., Weidner, C., Pflamm-Altenburg, J., Thies, I., Dabringhausen, J., Marks, M., & Maschberger, T. 2013, in: Oswalt, T. D. and Gilmore, G. (eds.), Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, p. 17Google Scholar
Leigh, N. W. C., Böker, T., Maccarone, T. J., & Perets, H. B. 2013a, MNRAS, 429, 2997Google Scholar
Leigh, N. W. C., Giersz, Webb, J. J., Hypki, A., De Marchi, G., Kroupa, P., & Sills, A. 2013b, MNRAS, 436, 3399Google Scholar
Leigh, N. W. C., Giersz, M., Marks, M., Webb, J. J., Hypki, A., Heinke, C. O., Kroupa, P., & Sills, A. 2014, arXiv1410.2248Google Scholar
Lützgendorf, N., Kissler-Patig, M., Gebhardt, K., Baumgardt, H., Noyola, E., de Zeeuw, P. T., Neumayer, N., Jalali, B., & Feldmeier, A. 2013, A&A, 552, 49Google Scholar
Madau, P. & Rees, M. J. 2001, ApJ (Letters), 551, L27Google Scholar
Marks, M. & Kroupa, P. 2011, A&A, 417, 1702Google Scholar
Marks, M. & Kroupa, P. 2012, A&A, 543, A8Google Scholar
Marks, M., Kroupa, P., & Oh, S. 2011, MNRAS, 417, 1684Google Scholar
Marks, M., Leigh, N., Giersz, M., Pfalzner, S., Pflamm-Altenburg, J., & Oh, S. 2014, MNRAS, 431, 3503Google Scholar
Milone, A. P., et al., 2012, A&A, 540, 16Google Scholar
Morscher, M., Pattabiraman, B., Rodriguez, C.Rasio, F. A., & Umbreit, S. 2014, arXiv1409.0866Google Scholar
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, NATURE, 428, 724Google Scholar
Sollima, A. & Mastrobuono Battisti, A. 2014, MNRAS, 443, 3513Google Scholar
Stodółkiewicz, J. S. 1986, AcA, 36, 19Google Scholar
Vasiliev, E. 2015, MNRAS, 446, 3150Google Scholar