Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T19:31:02.354Z Has data issue: false hasContentIssue false

Molecules in Supernova Ejecta

Published online by Cambridge University Press:  21 December 2011

Isabelle Cherchneff
Affiliation:
Departement Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland email: [email protected]
Arkaprabha Sarangi
Affiliation:
Departement Physik, Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first molecules detected at infrared wavelengths in the ejecta of a Type II supernova, namely SN1987A, consisted of CO and SiO. Since then, confirmation of the formation of these two species in several other supernovae a few hundred days after explosion has been obtained. However, supernova environments appear to hamper the synthesis of large, complex species due to the lack of microscopically-mixed hydrogen deep in supernova cores. Because these environments also form carbon and silicate dust, it is of importance to understand the role played by molecules in the depletion of elements and how chemical species get incorporated into dust grains. In the present paper, we review our current knowledge of the molecular component of supernova ejecta, and present new trends and results on the synthesis of molecules in these harsh, explosive events.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aitken, D. K., Smith, C. H., James, S. D., et al. 1988, M.N.R.A.S., 235, 19CrossRefGoogle Scholar
Catchpole, R. M., Whitelock, P. A., Feast, M. W., et al. 1988, M.N.R.A.S., 231, 75CrossRefGoogle Scholar
Cherchneff, I. 2006, A&A 456, 1001Google Scholar
Cherchneff, I. & Lilly, S. 2008, ApJ 683, L123CrossRefGoogle Scholar
Cherchneff, I. & Dwek, E. 2009, ApJ 703, 642CrossRefGoogle Scholar
Cherchneff, I. & Dwek, E. 2010, ApJ 713, 1CrossRefGoogle Scholar
Danziger, I. J., Bouchet, P., Fosbury, R. A. E., et al. 1988, in: Supernova 1987A in the Large Magellanic Cloud (Cambridge and New York: Cambridge University Press), p. 37Google Scholar
Danziger, I. J., Lucy, L. B., Bouchet, P., et al. 1989, in: Supernova 1987A in the Large Magellanic Cloud (Cambridge and New York: Cambridge University Press), p. 37Google Scholar
Fassia, A., Meikle, P., Chugai, N., et al. 2001, M.N.R.A.S, 325, 907CrossRefGoogle Scholar
Gearhart, R. A., Wheeler, J. C. & Swartz, D. A. 1999, ApJ, 510, 944CrossRefGoogle Scholar
Gerardy, C. L., Fesen, R. A., Hoeflich, P., & Wheeler, J. C. 2000, AJ 119, 2968CrossRefGoogle Scholar
Joggerst, C. C., Almgren, A., & Woosley, S. E. 2010, ApJ 723, 353CrossRefGoogle Scholar
Kifonidis, K., Plewa, T., Scheck, L., et al. 2006, A&A 463, 661Google Scholar
Kotak, R., Meikle, P., van Dyck, S., et al. 2005, ApJ 628, L123CrossRefGoogle Scholar
Kotak, R., Meikle, P., Pozzo, M., et al. 2006, ApJ 651, L117CrossRefGoogle Scholar
Kotak, R., Meikle, P., Farrah, D., et al. 2009, ApJ 704, 306CrossRefGoogle Scholar
Lepp, S., Dalgarno, A., & McCray, R. 1990, ApJ, 358, 262CrossRefGoogle Scholar
liu, W., Dalgarno, A., & Lepp, S. 1992, ApJ, 396, 679CrossRefGoogle Scholar
Liu, W. & Dalgarno, A. 1994, ApJ, 438, 789Google Scholar
Liu, W. & Dalgarno, A. 1995, ApJ, 454, 472CrossRefGoogle Scholar
Liu, W. & Dalgarno, A. 1996, ApJ, 471, 480CrossRefGoogle Scholar
Liu, W. 1998, ApJ, 496, 967CrossRefGoogle Scholar
Lucy, L. B., Danziger, I. J., Gouiffes, C., & Bouchet, P. 1989, in: Supernova 1987A in the Large Magellanic Cloud (Cambridge and New York: Cambridge University Press), p. 37Google Scholar
Meikle, P., Spyromilio, J., Allen, D. A., et al. 1993, M.N.R.A.S. 261, 235CrossRefGoogle Scholar
Miller, S., Tennyson, J., Lepp, S., & Dalgarno, A. 1992, Nature, 355, 420CrossRefGoogle Scholar
Petuchowski, S. J., Dwek, E., Allen, J. E. & Nuth, J. A. III 1989, ApJ, 342, 406CrossRefGoogle Scholar
Pozzo, M., Meikle, , Rayner, T. J., et al. 2006, M.N.R.A.S, 368, 1169CrossRefGoogle Scholar
Rauscher, T., Heger, A., Hoffman, R. D., & Woosley, S. E. 2002, ApJ, 576, 323CrossRefGoogle Scholar
Roche, P. F., Aitken, D. K., & Smith, C. H. 1991, M.N.R.A.S, 252, 39CrossRefGoogle Scholar
Spyromilio, J., Meikle, W. P. S., Learner, R. C. M., & Allen, D. A. 1988, Nature, 334, 327CrossRefGoogle Scholar
Spyromilio, J. & Leibundgut, B. 1996, M.N.R.A.S, 283, L89CrossRefGoogle Scholar
Spyromilio, J., Leibundgut, B., & Gilmozzi, R. 2001, A&A, 376, 188Google Scholar
Szalai, T, Vinkó, , Balog, Z., et al. 2011, A&A, 527, 61Google Scholar
Woosley, S. E. 1988, ApJ 218, 253Google Scholar
Yan, Min. & Dalgarno, A. 1998, ApJ, 500, 1049CrossRefGoogle Scholar
Zinner, E. 2007, in: Turekian, K. K., Holland, H. D. & Davis, A. M. (eds.), Treatise in Geochemistry 1 (Oxford and San Diego: Elsevier), p. 1Google Scholar