Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-12T21:49:28.352Z Has data issue: false hasContentIssue false

Molecular gas filamentary structures in galaxy clusters

Published online by Cambridge University Press:  07 April 2020

Francoise Combes*
Affiliation:
Observatoire de Paris, LERMA, College de France, CNRS, PSL Univ., Sorbonne Univ., F-75014, Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent molecular line observations with ALMA and NOEMA in several Brightest Cluster Galaxies (BCG) have revealed the large-scale filamentary structure at the center of cool core clusters. These filaments extend over 20-100kpc, they are tightly correlated with ionized gas (Hα, [NII]) emission, and have characteristic shapes: either radial and straight, or also showing a U-turn, like a horse-shoe structure. The kinematics is quite regular and laminar, and the derived infall time is much longer than the free-fall time. The filaments extend up to the radius where the cooling time becomes larger than the infall time. Filaments can be perturbed by the sloshing of the BCG in its cluster, and spectacular cooling wakes have been observed. Filaments tend to occur at the border of cavities driven in the X-ray gas by the AGN radio jets. Observations of cool core clusters support the thermal instability scenario, which accounts for the multiphase medium in the upper atmospheres of BCG, where the right balance between heating and cooling is reached, and a chaotic cold gas accretion occurs. Molecular filaments are also seen associated to ram-pressure stripped spiral galaxies in rich galaxy clusters, and in jet-induced star formation, suggesting a very efficient molecular cloud formation even in hostile cluster environments.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bigiel, F., Leroy, A., Walter, F.et al., 2008, AJ, 136, 284610.1088/0004-6256/136/6/2846CrossRefGoogle Scholar
Canning, R. E. A., Ryon, J. E., Gallagher, J. S.et al., 2014, MNRAS, 444, 33610.1093/mnras/stu1191CrossRefGoogle Scholar
Dasyra, K. M., Combes, F., Salomé, P., & Braine, J., 2012, A&A, 540, A112Google Scholar
David, L. P., Lim, J., Forman, W.et al., 2014, ApJ, 792, 9410.1088/0004-637X/792/2/94CrossRefGoogle Scholar
Fabian, A. C., Sanders, J. S., Allen, S. W.et al., 2003, MNRAS, 344, L4310.1046/j.1365-8711.2003.06902.xCrossRefGoogle Scholar
Fabian, A. C., 2012, ARA&A, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Ferrara, A., & Scannapieco, E., 2016, ApJ, 833, 4610.3847/1538-4357/833/1/46CrossRefGoogle Scholar
Fraternali, F., & Binney, J. J., 2008, MNRAS, 386, 93510.1111/j.1365-2966.2008.13071.xCrossRefGoogle Scholar
Gaspari, M., Melioli, C., Brighenti, F., & D’Ercole, A., 2011 MNRAS, 411, 34910.1111/j.1365-2966.2010.17688.xCrossRefGoogle Scholar
Gaspari, M., Ruszkowski, M., & Sharma, P., 2012 ApJ, 746, 9410.1088/0004-637X/746/1/94CrossRefGoogle Scholar
Gaspari, M., & Sadowski, A., 2017, ApJ, 837, 14910.3847/1538-4357/aa61a3CrossRefGoogle Scholar
Hamer, S. L., Edge, A. C., Swinbank, A. M.et al., 2014, MNRAS, 437, 86210.1093/mnras/stt1949CrossRefGoogle Scholar
Hopkins, P. F., & Elvis, M., 2010, MNRAS, 401, 710.1111/j.1365-2966.2009.15643.xCrossRefGoogle Scholar
Jachym, P., Combes, F., Cortese, L.et al., 2014 ApJ, 792, 1110.1088/0004-637X/792/1/11CrossRefGoogle Scholar
Jachym, P., Sun, M., Kenney, J. D. Pet al., 2017 ApJ, 839, 114CrossRefGoogle Scholar
Kenney, J. D. P., Tal, T., Crowl, h. H.et al., 2008, ApJ, 687, L6910.1086/593300CrossRefGoogle Scholar
Lau, E. T., Gaspari, M., Nagai, D., & Coppi, P., 2017, ApJ, 849, 5410.3847/1538-4357/aa8c00CrossRefGoogle Scholar
Lim, J., Ohyama, Y., Chi-Hung, Y.et al., 2012 ApJ, 744, 11210.1088/0004-637X/744/2/112CrossRefGoogle Scholar
Marasco, A., Marinacci, F., & Fraternali, F., 2013, MNRAS, 433, 163410.1093/mnras/stt836CrossRefGoogle Scholar
Marinacci, F., Fraternali, F., Nipoti, C.et al., 2011, MNRAS, 415, 153410.1111/j.1365-2966.2011.18810.xCrossRefGoogle Scholar
McCourt, M., Sharma, P., Quataert, E., & Parrish, I. J., 2012, MNRAS, 419, 331910.1111/j.1365-2966.2011.19972.xCrossRefGoogle Scholar
McDonald, M., & Veilleux, S., 2009, ApJ, 703, L17210.1088/0004-637X/703/2/L172CrossRefGoogle Scholar
McNamara, B. R., Russell, H. R., Nulsen, P. E. J.et al., 2014, ApJ, 785, 4410.1088/0004-637X/785/1/44CrossRefGoogle Scholar
McNamara, B. R., Russell, H. R., Nulsen, P. E. J.et al., 2016, ApJ, 830, 7910.3847/0004-637X/830/2/79CrossRefGoogle Scholar
Pulido, F. A., McNamara, B. R., Edge, A. C.et al., 2018, ApJ, 853, 17710.3847/1538-4357/aaa54bCrossRefGoogle Scholar
Revaz, Y., Combes, F., & Salomé, 2008, A&A, 477, L33Google Scholar
Richings, A. J., & Faucher-Giguère, C.-A., 2018, MNRAS, 474, 367310.1093/mnras/stx3014CrossRefGoogle Scholar
Russell, H. R., McNamara, B. R., Edge, A. C.et al., 2014, ApJ, 784, 7810.1088/0004-637X/784/1/78CrossRefGoogle Scholar
Russell, H. R., McNamara, B. R., Fabian, A. Cet al. 2017, MNRAS, 472, 402410.1093/mnras/stx2255CrossRefGoogle Scholar
Salomé, P., & Combes, F., 2004, A&A, 415, L1Google Scholar
Salomé, P., Combes, F., Edge, A. C.et al., 2006, A&A, 454, 437Google Scholar
Salomé, P., Combes, F., Revaz, Y.et al., 2008, A&A, 484, 317Google Scholar
Salomé, P., Combes, F., Revaz, Y.et al., 2011, A&A, 531, A85Google Scholar
Salomé, Q., Salomé, P., Combes, F., & Hamer, S., 2016, A&A, 595, A65Google Scholar
Sharma, P., McCourt, M., Quataert, E., & Parrish, I. J., 2012, MNRAS, 420, 317410.1111/j.1365-2966.2011.20246.xCrossRefGoogle Scholar
Temi, P., Amblard, A., Gitti, M.et al., 2018, ApJ, 858, 1710.3847/1538-4357/aab9b0CrossRefGoogle Scholar
Tremblay, G. R., Oonk, J. B. R., Combes, F.et al., 2016, Nature, 534, 21810.1038/nature17969CrossRefGoogle Scholar
Tremblay, G. R., Combes, F., Oonk, J. B. R.et al., 2018, ApJ, subGoogle Scholar
van Breugel, W., Heckman, T., & Miley, G., 1984, ApJ, 276, 7910.1086/161594CrossRefGoogle Scholar
Voit, G. M., Donahue, M., Bryan, G. L., & McDonald, M., 2015, Nature, 519, 20310.1038/nature14167CrossRefGoogle Scholar
Voit, G. M., Meece, G., Li, Y.et al., 2017, ApJ, 845, 8010.3847/1538-4357/aa7d04CrossRefGoogle Scholar
Yagi, M., Komiyama, Y., & Yoshida, M., 2007, ApJ, 660, 120910.1086/512359CrossRefGoogle Scholar