Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T15:51:50.682Z Has data issue: false hasContentIssue false

Modelling the emission of HNCO towards IRAS16293-2422 using a new set of collisional coefficients

Published online by Cambridge University Press:  04 September 2018

Hernández-Gómez A.
Affiliation:
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, Mexico IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
Sahnoun E.
Affiliation:
Université de Tunis El Manar, Tunisia
Caux E.
Affiliation:
IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
Wiesenfeld L.
Affiliation:
Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
Loinard L.
Affiliation:
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, Mexico
Bottinelli S.
Affiliation:
IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
Hammami K.
Affiliation:
Université de Tunis El Manar, Tunisia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Isocyanic acid (HNCO) is a simple molecule containing the four main atoms essential for life and can be considered as a prebiotic molecule. To model the HNCO emission in the IRAS16293-2422 class 0 low-mass protostar, we used a new set of HNCO collisional coefficients with ortho-H2 and para-H2, computed from a set of rotational excitation quenching rates between HNCO and H2 based on a novel potential energy surface for the rigid molecules interactions. We present here the HNCO Potential Energy Surface used to compute this new set of collisional coefficients and the result of the IRAS16293-2422 HNCO spectrum modelling using them.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Brinch, C. & Hogerheijde, M. R. 2010, A&A, 523, A25Google Scholar
Caux, E., Kahane, C., Castets, A., et al. 2011, A&A, 532, A23Google Scholar
Ceccarelli, C., Bacmann, A., Boogert, A., et al. 2010, A&A, 521, L22Google Scholar
Crimier, N., Ceccarelli, C., Maret, S., et al., 2010, A&A, 519, A65Google Scholar
Green 1986, NASA Tech. Memo. TM 87791Google Scholar
Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G., 2001, A&A, 370, L49Google Scholar
Quénard, D., Bottinelli, S., & Caux, E., 2017, MNRAS, 468, 685Google Scholar
Ruaud, M., Wakelam, V., & Hersant, F., 2016, MNRAS, 459, 3756Google Scholar
Sahnoun et al. 2017, in preparationGoogle Scholar
van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J., & van Dishoeck, E. F., 2007, A&A, 468, 627Google Scholar