Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T12:42:53.254Z Has data issue: true hasContentIssue false

Modelling of an Eclipsing RS CVn Binary: V405 And

Published online by Cambridge University Press:  23 April 2012

Krisztián Vida
Affiliation:
Konkoly Observatory, Konkoly Thege út 15-17., H-1121 Budapest, Hungary email: [email protected], [email protected], [email protected]
Katalin Oláh
Affiliation:
Konkoly Observatory, Konkoly Thege út 15-17., H-1121 Budapest, Hungary email: [email protected], [email protected], [email protected]
Zsolt Kővári
Affiliation:
Konkoly Observatory, Konkoly Thege út 15-17., H-1121 Budapest, Hungary email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

V405 And is an ultrafast-rotating (Prot ≈ 0.46 days) eclipsing binary. The system consists of a primary star with radiative core and convective envelope, and a fully convective secondary. Theories have shown that stellar structure can depend on magnetic activity, i.e., magnetically active M-dwarfs should have larger radii. Earlier light curve modelling of V405 And indeed showed this behaviour: we found that the radius of the primary is significantly larger than the theoretically predicted value for inactive main sequence stars (the discrepancy is the largest of all known objects), while the secondary fits well to the mass-radius relation. By modelling our recently obtained light curves, which show significant changes of the spotted surface of the primary, we can find further proof for this phenomenon.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403Google Scholar
Blake, C. H., Torres, G., Bloom, J. S., & Gaudi, B. S. 2008, ApJ, 684, 635CrossRefGoogle Scholar
Chevalier, C. & Ilovaisky, S. A. 1997, A&A, 326, 228Google Scholar
Devor, J., et al. , 2008, ApJ, 687, 1253CrossRefGoogle Scholar
Dimitrov, D. P. & Kjurkchieva, D. P. 2010, MNRAS, 406, 2559CrossRefGoogle Scholar
Hebb, L., Wyse, R. F. G., Gilmore, G., & Holtzman, J. 2006, AJ, 131, 555CrossRefGoogle Scholar
López-Morales, M. 2007, ApJ, 660, 732CrossRefGoogle Scholar
López-Morales, M., Orosz, J. A., Shaw, J. S., Havelka, L., Arevalo, M. J., McIntyre, T., & Lazaro, C. 2006, ArXiv Astrophysics e-prints, 0610225Google Scholar
Mullan, D. J. & MacDonald, J. 2001, ApJ, 559, 353CrossRefGoogle Scholar
Prša, A. & Zwitter, T. 2005, ApJ, 628, 426CrossRefGoogle Scholar
Ribárik, G., Oláh, K., & Strassmeier, K. G. 2003, AN, 324, 202Google Scholar
Vida, K., Oláh, K., Kővári, Zs., Korhonen, H., Bartus, J., Hurta, Zs., & Posztobányi, K. 2009, A&A, 504, 1021Google Scholar
Voges, W., Gruber, R., Haberl, F., Kuerster, M., Pietsch, W., & Zimmermann, U. 1996, VizieR Online Data Catalog, 9011, 0Google Scholar