Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T18:18:36.124Z Has data issue: false hasContentIssue false

Modelling magnetically dominated and radiatively cooling jets

Published online by Cambridge University Press:  24 February 2011

Martín Huarte-Espinosa
Affiliation:
Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY, 14627-0171 emails: [email protected]; [email protected]; [email protected] Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Adam Frank
Affiliation:
Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY, 14627-0171 emails: [email protected]; [email protected]; [email protected]
Eric Blackman
Affiliation:
Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY, 14627-0171 emails: [email protected]; [email protected]; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using 3D-MHD Eulerian-grid numerical simulations, we study the formation and evolution of rising magnetic towers propagating into an ambient medium. The towers are generated from a localized injection of pure magnetic energy. No rotation is imposed on the plasma. We compare the evolution of a radiatively cooling tower with an adiabatic one, and find that both bend due to pinch instabilities. Collimation is stronger in the radiative cooling case; the adiabatic tower tends to expand radially. Structural similarities are found between these towers and the millimeter scale magnetic towers produced in laboratory experiments.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Blackman, E. G., Frank, A., & Welch, C. 2001, ApJ, 546, 288Google Scholar
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Blondin, J. M., Fryxell, B. A., & Konigl, A. 1990, ApJ, 360, 370Google Scholar
Lebedev, S. V., et al. 2005, MNRAS, 361, 97Google Scholar
Ciardi, A., et al. 2007, Phys. of Plasmas, 14, 056501Google Scholar
Cunningham, A. J., Frank, A., Varnière, P., Mitran, S., & Jones, T. W. 2009, ApJS, 182, 519Google Scholar
Dalgarno, A. & McCray, R. A. 1972, ARA&A, 10, 375Google Scholar
Frank, A., Ryu, D., Jones, T. W., & Noriega-Crespo, A. 1998, ApJL, 494, L79CrossRefGoogle Scholar
Hardee, P. E. & Stone, J. M. 1997, ApJ, 483, 121Google Scholar
Li, H., Lapenta, G., Finn, J. M., Li, S., & Colgate, S. A. 2006, ApJ, 643, 92Google Scholar
Lovelace, R. V. E., Li, H., Koldoba, A. V., Ustyugova, G. V., & Romanova, M. M. 2002, ApJ, 572, 445Google Scholar
Lynden-Bell, D. 1996, MNRAS, 279, 389CrossRefGoogle Scholar
Lynden-Bell, D. 2003, MNRAS, 341, 1360Google Scholar
Mohamed, S. & Podsiadlowski, P. 2007, ASPC, 372, 397Google Scholar
Nakamura, M. & Meier, D. L. 2004, ApJ, 617, 123Google Scholar
Ouyed, R. & Pudritz, R. E. 1997, ApJ, 482, 712Google Scholar
Pudritz, R. E., Ouyed, R., Fendt, C., & Brandenburg, A. 2007, Protostars and Planets V, 277Google Scholar
Shibata, K. & Uchida, Y. 1986, PASJ, 38, 631Google Scholar
Ustyugova, G. V., Lovelace, R. V. E., Romanova, M. M., Li, H., & Colgate, S. A. 2000, ApJ, 541, L21CrossRefGoogle Scholar