Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:00:03.379Z Has data issue: false hasContentIssue false

Modelling grand minima of solar activity using a flux transport dynamo model

Published online by Cambridge University Press:  18 July 2013

Bidya Binay Karak
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560012, India email: [email protected]
Arnab Rai Choudhuri
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560012, India email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The occurrence of grand minima like the Maunder minimum is an intriguing aspect of the sunspot cycle. We use the flux transport dynamo model to explain the grand minima, showing that they arise when either the poloidal field or the meridional circulation falls to a sufficiently low value due to fluctuations. Assuming these fluctuations to be Gaussian and determining the various parameters from the data of the last 28 cycles, we carry on a dynamo simulation with both these fluctuations. The results are remarkably close to the observational data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Charbonneau, P., Blais-Laurier, G., & St-Jean, C. 2004, ApJ, 616, L183 Google Scholar
Chatterjee, P. & Choudhuri, A. R. 2006, Solar Phys., 239, 29 CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019 Google Scholar
Choudhuri, A. R. 1992, A&A, 253, 277 Google Scholar
Choudhuri, A. R. 2011, Pramana, 77, 77 Google Scholar
Choudhuri, A. R. 2012, in: Mandrini, C. H. & Webb, D. F. (eds.), Comparative Magnetic Minima: Characterizing quiet times in the Sun and Stars, Proc. IAU Symposium No. 286, p. 350 Google Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103 Google Scholar
Choudhuri, A. R. & Karak, B. B. 2009, RAA, 9, 953 Google Scholar
Choudhuri, A. R. & Karak, B. B. 2012, Phys. Rev. Lett., 109, 171103 Google Scholar
Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29 Google Scholar
D'Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621 Google Scholar
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T. 2010, A&A, 518, 7 Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527 CrossRefGoogle Scholar
Goel, A. & Choudhuri, A. R. 2009, RAA, 9, 115 Google Scholar
Hoyt, D. V. & Schatten, K. H. 1996, Solar Phys., 165, 181 Google Scholar
Karak, B. B. 2010, ApJ, 724, 1021 Google Scholar
Karak, B. B. & Choudhuri, A. R. 2011, MNRAS, 410, 1503 Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Solar Phys., 278, 137 Google Scholar
Karak, B. B. & Petrovay, K. 2013, Solar Phys., 282, 321 Google Scholar
Karak, B. B. & Nandy, D. 2012, ApJ, 761, L13 Google Scholar
Longcope, D. & Choudhuri, A. R 2002 Solar Phys. 205, 63 Google Scholar
Miyahara, H., et al. 2004, Solar Phys., 224, 317 Google Scholar
Nagaya, K. et al. 2012, Solar Phys., 280, 223.Google Scholar
Nandy, D. & Choudhuri, A. R. 2002, Science, 296, 1671 Google Scholar
Parker, E. N. 1955, ApJ, 122, 293 CrossRefGoogle Scholar
Passos, D. & Lopes, I. 2011, JASTP, 73, 191 Google Scholar
Ribes, J. C. & Nesme-Ribes, E. 1993, A&A, 276, 549 Google Scholar
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, A&A, 471, 301 Google Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544 CrossRefGoogle Scholar