Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-04T09:28:17.273Z Has data issue: false hasContentIssue false

Modelling energy-dependent pulsar light curves

Published online by Cambridge University Press:  04 June 2018

Christo Venter
Affiliation:
Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa email: [email protected]
Monica Barnard
Affiliation:
Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa email: [email protected]
Alice K. Harding
Affiliation:
Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Constantinos Kalapotharakos
Affiliation:
Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Universities Space Research Association (USRA), Columbia, MD 21046, USA University of Maryland, College Park (UMDCP/CRESST), College Park, MD 20742, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years, surprise discoveries of pulsed emission from the Crab and Vela pulsars above 100 GeV have drawn renewed attention to this largely unexplored region of the energy range. In this paper, we discuss example light curves due to curvature emission, with good resolution in the different energy bands. Continued light curve modelling may help to discriminate between different emission mechanisms, as well as constrain the location where emission is produced within the pulsar magnetosphere, including regions beyond the light cylinder.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abdo, A. A., 2010, ApJ, 708, 1254CrossRefGoogle Scholar
Abdo, A. A., 2010, ApJ, 713, 154Google Scholar
Aleksić, J., 2012, A&A, 540, A69Google Scholar
Ansoldi, S., 2016, A&A, 585, A133Google Scholar
Bai, X.-N., & Spitkovsky, A., 2010, ApJ, 715, 1282CrossRefGoogle Scholar
Bühler, R. & Blandford, R. 2014, Rep. Prog. Phys., 77, 6Google Scholar
Cerutti, B., Mortier, J., & Philippov, A. A., 2016, MNRAS, 463, 89Google Scholar
Daugherty, J. K., & Harding, A. K., 1982, ApJ, 252, 337Google Scholar
Daugherty, J. K., & Harding, A. K., 1996, ApJ, 458, 278CrossRefGoogle Scholar
de Naurois, M., 2015, 34th ICRC, 34, 21Google Scholar
Dyks, J., Harding, A. K., & Rudak, B., 2004, ApJ, 606, 1125CrossRefGoogle Scholar
Harding, A. K., 2016, J. Plasma Phys., 82, 3CrossRefGoogle Scholar
Harding, A. K., & Kalapotharakos, C., 2015, ApJ, 811, 63Google Scholar
Harding, A. K., & Kalapotharakos, C., 2017, ApJ, 840, 73Google Scholar
Harding, A. K., & Muslimov, A. G., 2011, ApJ, 723, 181Google Scholar
Harding, A. K., et al. 2002, ApJ, 576, 376Google Scholar
Kalapotharakos, C., Kazanas, D., Harding, A. K., & Contopoulos, I., 2012, ApJ, 749, 2Google Scholar
Kalapotharakos, C., Harding, A. K., & Kazanas, D., 2014, ApJ, 793, 97Google Scholar
Li, J., Spitkovsky, A., & Tchekhovskoy, A., 2012, ApJ, 746, 60Google Scholar
Mignani, R. P. et al. 2017, submitted to ApJ Letter (ArXiv:1708.02828)Google Scholar
Pétri, J., 2012, MNRAS, 424, 2023CrossRefGoogle Scholar
Philippov, A. A., Spitkovsky, A., & Cerutti, B., 2015, ApJL, 801, 19Google Scholar
Philippov, A. A. & Spitkovsky, A. 2017, submitted to ApJ (ArXiv:1707.04323)Google Scholar
Romani, R. W., 1996, ApJ, 470, 469Google Scholar
Timokhin, A. N., & Harding, A. K., 2015, ApJ, 810, 144CrossRefGoogle Scholar