Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T10:55:11.960Z Has data issue: false hasContentIssue false

Modeling with the crowd: Optimizing the human-machine partnership with Zooniverse

Published online by Cambridge University Press:  10 June 2020

Hugh Dickinson
Affiliation:
School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Lucy Fortson
Affiliation:
School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Claudia Scarlata
Affiliation:
School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Melanie Beck
Affiliation:
School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
Mike Walmsley
Affiliation:
Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

LSST and Euclid must address the daunting challenge of analyzing the unprecedented volumes of imaging and spectroscopic data that these next-generation instruments will generate. A promising approach to overcoming this challenge involves rapid, automatic image processing using appropriately trained Deep Learning (DL) algorithms. However, reliable application of DL requires large, accurately labeled samples of training data. Galaxy Zoo Express (GZX) is a recent experiment that simulated using Bayesian inference to dynamically aggregate binary responses provided by citizen scientists via the Zooniverse crowd-sourcing platform in real time. The GZX approach enables collaboration between human and machine classifiers and provides rapidly generated, reliably labeled datasets, thereby enabling online training of accurate machine classifiers. We present selected results from GZX and show how the Bayesian aggregation engine it uses can be extended to efficiently provide object-localization and bounding-box annotations of two-dimensional data with quantified reliability. DL algorithms that are trained using these annotations will facilitate numerous panchromatic data modeling tasks including morphological classification and substructure detection in direct imaging, as well as decontamination and emission line identification for slitless spectroscopy. Effectively combining the speed of modern computational analyses with the human capacity to extrapolate from few examples will be critical if the potential of forthcoming large-scale surveys is to be realized.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ivezić, Ž., Tyson, J. A., Acosta, E., Allsman, R., Anderson, S. F., Andrew, J., Angel, J. R. P., Axelrod, T. S.et al., 2008. ArXiv e-prints 0805.2366Google Scholar
Laureijs, R., Amiaux, J., Arduini, S., Auguères, J. L., Brinchmann, J., Cole, R., Cropper, M., Dabin, C.et al., 2011. ArXiv e-prints 1110.3193Google Scholar
Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L. & McConnachie, A. W., 2011. ApJS 196, 11CrossRefGoogle Scholar
Nair, P. B. & Abraham, R. G., 2010. ApJS 186, 427CrossRefGoogle Scholar
Lintott, C. J., Schawinski, K., Slosar, A., Land, K., Bamford, S., Thomas, D., Raddick, M. J., Nichol, R. C.et al., 2008. MNRAS 389, 1179CrossRefGoogle Scholar
Dieleman, S., Willett, K. W. & Dambre, J., 2015. MNRAS 450, 1441CrossRefGoogle Scholar
Domnguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D. & Fischer, J. L., 2018. MNRAS 476, 3661CrossRefGoogle Scholar
Beck, M. R., Scarlata, C., Fortson, L. F., Lintott, C. J., Simmons, B. D., Galloway, M. A., Willett, K. W., Dickinson, H.et al., 2018. MNRAS 476, 5516CrossRefGoogle Scholar
Willett, K. W., Lintott, C. J., Bamford, S. P., Masters, K. L., Simmons, B. D., Casteels, K. R. V., Edmondson, E. M., Fortson, L. F.et al., 2013. MNRAS 435, 2835CrossRefGoogle Scholar
Hart, R. E., Bamford, S. P., Willett, K. W., Masters, K. L., Cardamone, C., Lintott, C. J., Mackay, R. J., Nichol, R. C.et al., 2016. MNRAS 461, 366310.1093/mnras/stw1588CrossRefGoogle Scholar
Marshall, P. J., Verma, A., More, A., Davis, C. P., More, S., Kapadia, A., Parrish, M., Snyder, C.et al., 2016. MNRAS 455, 1171CrossRefGoogle Scholar
Branson, S., Horn, G. V & Perona, P., 2017. In 2017 IEEE Conference on ComputerVision and Pattern Recognition (CVPR). 6109–6118Google Scholar
Gal, Y. & Ghahramani, Z., 2015. ArXiv e-prints 1506.02158Google Scholar