Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T20:34:17.275Z Has data issue: false hasContentIssue false

Modeling the panchromatic emission of galaxies with CIGALE

Published online by Cambridge University Press:  10 June 2020

M. Boquien
Affiliation:
Centro de Astronoma (CITEVA),Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile email: [email protected]
D. Burgarella
Affiliation:
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
Y. Roehlly
Affiliation:
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
V. Buat
Affiliation:
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
L. Ciesla
Affiliation:
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
D. Corre
Affiliation:
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
A. K. Inoue
Affiliation:
Waseda University Department of Physics Waseda Research Institute for Science and Engineering Tõkyõ, Japan
H. Salas
Affiliation:
Centro de Astronoma (CITEVA),Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Panchromatic modeling is one of the most powerful tools at our disposal to measure reliably the physical properties of galaxies across cosmic times. We present here an entirely new implementation in python of one such tool: CIGALE. Developed along three main design principles: simplicity, modularity, and efficiency, it has proven to be a versatile code that in addition to estimating the physical properties of galaxies (or regions within galaxies), can generate arbitrary sets of theoretical models or be used as a library to build other tools. Among its defining features, it is a truly panchromatic code ranging from the far-ultraviolet to the radio that takes into account numerous physical components (including active nuclei or synchrotron emission), that can fit non-photometric data, handle upper limits, determine photometric redshifts, and even build mock catalogs.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Boquien, M., Boselli, A., Buat, V., Baes, M., Bendo, G., Boissier, S., Ciesla, L., Cooray, A., et al. 2013,, 554, A1410.1051/0004-6361/201220768CrossRefGoogle Scholar
Boquien, M., Buat, V., & Perret, V. 2014,, 571, A7210.1051/0004-6361/201424441CrossRefGoogle Scholar
Boquien, M., Burgarella, D., Roehlly, Y., Buat, V., Ciesla, L., Corre, D., Inoue, A. K., & Salas, H. 2018,, 622, A103CrossRefGoogle Scholar
Boquien, M., Kennicutt, R., Calzetti, D., Dale, D., Galametz, M., Sauvage, M., Croxall, K., Draine, B., et al. 2016,, 591, A610.1051/0004-6361/201527759CrossRefGoogle Scholar
Buat, V., Boquien, M., Małek, K., Corre, D., Salas, H., Roehlly, Y., Shirley, R., & Efstathiou, A. 2018,, 619, A13510.1051/0004-6361/201833841CrossRefGoogle Scholar
Buat, V., Giovannoli, E., Heinis, S., Charmandaris, V., Coia, D., Daddi, E., Dickinson, M., Elbaz, D., et al. 2011,, 533, A93+10.1051/0004-6361/201117264CrossRefGoogle Scholar
Buat, V., Heinis, S., Boquien, M., Burgarella, D., Charmandaris, V., Boissier, S., Boselli, A., Le Borgne, D., & Morrison, G. 2014,, 561, A3910.1051/0004-6361/201322081CrossRefGoogle Scholar
Buat, V., Noll, S., Burgarella, D., Giovannoli, E., Charmandaris, V., Pannella, M., Hwang, H. S., Elbaz, D., et al. 2012,, 545, A14110.1051/0004-6361/201219405CrossRefGoogle Scholar
Burgarella, D., Buat, V., & Iglesias-Páramo, J. 2005,, 360, 141310.1111/j.1365-2966.2005.09131.xCrossRefGoogle Scholar
Ciesla, L., Boselli, A., Elbaz, D., Boissier, S., Buat, V., Charmandaris, V., Schreiber, C., Béthermin, M., et al. 2016,, 585, A4310.1051/0004-6361/201527107CrossRefGoogle Scholar
Ciesla, L., Charmandaris, V., Georgakakis, A., Bernhard, E., Mitchell, P. D., Buat, V., Elbaz, D., LeFloc’h, E., et al. 2015,, 576, A1010.1051/0004-6361/201425252CrossRefGoogle Scholar
Ciesla, L., Elbaz, D., & Fensch, J. 2017,, 608, A4110.1051/0004-6361/201731036CrossRefGoogle Scholar
Mezcua, M., Civano, F., Marchesi, S., Suh, H., Fabbiano, G., & Volonteri, M. 2018,, 478, 257610.1093/mnras/sty1163CrossRefGoogle Scholar
Noll, S., Burgarella, D., Giovannoli, E., Buat, V., Marcillac, D., & Muñoz-Mateos, J. C. 2009,, 507, 179310.1051/0004-6361/200912497CrossRefGoogle Scholar
Salim, S., Boquien, M., & Lee, J. C. 2018,, 859, 1110.3847/1538-4357/aabf3cCrossRefGoogle Scholar
Salim, S., Lee, J. C., Janowiecki, S., da Cunha, E., Dickinson, M., Boquien, M., Burgarella, D., Salzer, J. J., & Charlot, S. 2016,, 227, 2CrossRefGoogle Scholar
Sawicki, M. 2012,, 124, 1208CrossRefGoogle Scholar