Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-02T22:08:23.788Z Has data issue: false hasContentIssue false

Modeling of Circumstellar Dust by the DUSTY Code

Published online by Cambridge University Press:  23 April 2012

Tomislav Jurkić
Affiliation:
Department of Physics, University of Rijeka, Omladinska 14, HR-51000 Rijeka, Croatia email: [email protected]
Dubravka Kotnik-Karuza
Affiliation:
Department of Physics, University of Rijeka, Omladinska 14, HR-51000 Rijeka, Croatia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a circumstellar dust model around the symbiotic Mira RR Tel obtained by modeling the near-infrared JHKL magnitudes and ISO spectra. In order to follow the evolution of infrared colours in time, the published JHKL magnitudes were corrected by removing the Mira pulsations. The RR Tel light curves show three obscuration events in the near-IR. Using the simultaneously available JHKL magnitudes and ISO spectra in three different epochs, we obtained SEDs in the near- and mid-IR spectral region (1-20 μm) in epochs with and without obscuration.

The DUSTY numerical code was used to solve the radiative transfer and to determine the circumstellar dust properties of the inner dust regions around the Mira, assuming a spherical dust temperature distribution in its close neighbourhood. The physical properties of the dust, mass loss and optical depth during intervals with and without obscuration have been obtained. Both JHKL and ISO observations during the obscuration period can be reproduced with a spherical dust envelope, while ISO spectra outside obscuration show a different behaviour. The dynamical behaviour of the circumstellar dust was obtained by modeling the JHKL magnitudes observed during the span of more than 30 years.

The DUSTY code was also successfully applied in the modeling of circumstellar dust envelopes of young stellar objects, such as Herbig Ae/Be stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Angeloni, R., Contini, M., Ciroi, S., & Rafanelli, P. 2010, MNRAS, 402, 2075Google Scholar
Chiang, E. I. & Goldreich, P. 2001, ApJ, 490, 368Google Scholar
Dullemond, C. P., Dominik, C., & Natta, A. 2001, ApJ, 560, 957Google Scholar
Gromadzki, M., Mikolajewska, J., Whitelock, P., & Marang, F. 2009, AcA.Google Scholar
Ivezic, Z. & Elitzur, M. 1997, MNRAS, 287, 799CrossRefGoogle Scholar
Ivezic, Z., Nenkova, M., & Elitzur, M. 1999, User Manual for DUSTY, University of Kentucky Internal Report, accessible at http://www.pa.uky.edu/~moshe/dustyGoogle Scholar
Kenyon, S. J. 1986 The symbiotic stars (Cambridge & New York: Cambridge Univ. Press), p.295CrossRefGoogle Scholar
Kotnik-Karuza, D., Friedjung, M., Whitelock, P. A., Marang, F., Exter, K., Keenan, F. P., & Pollacco, D. L. 2006, A&A, 452, 503Google Scholar
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425CrossRefGoogle Scholar
Mikolajewska, J., Friedjung, M., Kenyon, S. J., & Viotti, R. 1988, in: Mikolajewska, J., Friedjung, M., Kenyon, S. J. & Viotti, R. (eds.) The symbiotic phenomenom, Proceedings of IAU Colloq. 103 (Dordrecht: Kluwer), vol. 145, p. 381CrossRefGoogle Scholar
Monnier, J. D., Berger, J.-P., Millan-Gabet, R., et al. , 2006, ApJ, 647, 444CrossRefGoogle Scholar
Ossenkopf, V., Henning, Th., & Mathis, J. S. 1992, A&A, 261, 567Google Scholar
Vinkovic, D., Ivezic, Z., Jurkic, T., & Elitzur, M. 2006, ApJ, 636, 348CrossRefGoogle Scholar
Vinkovic, D. & Jurkic, T. 2007, ApJ, 658, 462Google Scholar
Whitelock, P. A. 1987, PASP, 99, 573CrossRefGoogle Scholar
Whitelock, P. A. 2003, in: Corradi, R. L. M., Mikolajewska, J. & Mahoney, T. J. (eds.) Symbiotic stars probing stellar evolution, ASP-CS, 303, 41Google Scholar