Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T04:09:49.548Z Has data issue: false hasContentIssue false

Modeling convection and zonal winds in giant planets

Published online by Cambridge University Press:  01 August 2006

Martha Evonuk
Affiliation:
Institut für Geophysik, ETH Hoengg, 8093 Zürich, Switzerland email: [email protected]
Gary A. Glatzmaier
Affiliation:
Department of Earth and Planetary Sciences, University of California, Santa Cruz 1156 High Street, Santa Cruz, CA 95064, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three basic modeling approaches have been used to numerically simulate fluid turbulence and the banded zonal winds in the interiors and atmospheres of giant planets: shallow-water models, deep-shell Boussinesq models and deep-shell anelastic models. We review these models and discuss the approximations and assumptions upon which they are based. All three can produce banded zonal wind patterns at the surface. However, shallow-water models produce a retrograde (i.e., westward) zonal jet in the equatorial region, whereas strong prograde (i.e., eastward) equatorial jets exist on Jupiter and Saturn. Deep-shell Boussinesq models maintain prograde equatorial jets by the classic method of vortex stretching of convective columnar flows; however, they neglect the effects of the large density stratification in these giant planets. Deep-shell anelastic models account for density stratification and maintain prograde equatorial jets by generating vorticity as rising fluid expands and sinking fluid contracts, without the constraint of long thin convective columns.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Boussinesq, J. 1903, Theorie analytique de la chaleur (Paris: Gauthier-Vellars), 2, 172Google Scholar
Busse, F.H. 1976, Icarus 29, 255CrossRefGoogle Scholar
Cho, J. Y-K. & Polvani, L.M. 1996, Phys. Fluids 8, 1531CrossRefGoogle Scholar
Christensen, U.R. 2002, J. Fluid Mech. 470, 115CrossRefGoogle Scholar
Dowling, T.E., Fischer, A.S., Gierasch, P.J., Harrington, J., LeBeau, R.P. & Santori, C.M. 1998, Icarus 132, 221CrossRefGoogle Scholar
Evonuk, M. & Glatzmaier, G.A. 2006a, Icarus 181, 458CrossRefGoogle Scholar
Evonuk, M. & Glatzmaier, G.A. 2006b, Planet. and Space Sci. in pressGoogle Scholar
Glatzmaier, G.A., Evonuk, M. & Rogers, T.M. in prep.Google Scholar
Glatzmaier, G.A. & Gilman, P.A. 1981a, ApJS 45, 335Google Scholar
Glatzmaier, G.A. & Gilman, P.A. 1981b, ApJS 45, 381CrossRefGoogle Scholar
Gough, D.O. 1969, J. Atmos. Sci. 26, 4482.0.CO;2>CrossRefGoogle Scholar
Guillot, T. 1999, Science 286, 72CrossRefGoogle Scholar
Heimpel, M., Aurnou, J. & Wicht, J. 2005, Nature 438, 193CrossRefGoogle Scholar
Ingersoll, A.P. & Pollard, D. 1982, Icarus 52, 60CrossRefGoogle Scholar
Lipps, F.B. 1990, J. Atmos. Sci. 47, 17942.0.CO;2>CrossRefGoogle Scholar
Mihaljan, J.M. 1962, ApJ 136, 1126CrossRefGoogle Scholar
Porco, C.C., et al. 2003, Science 299, 1541CrossRefGoogle Scholar
Rhines, P.B. 1975, J. Fluid Mech. 69, 417CrossRefGoogle Scholar
Showman, A.P., Gierasch, P.J. & Lian, Y. 2006, Icarus 182, 513CrossRefGoogle Scholar
Spiegel, E.A. & Veronis, G. 1960, ApJ 131, 442CrossRefGoogle Scholar
Verkley, W.T.M. 1990, J. Atmos. Sci. 47, 24532.0.CO;2>CrossRefGoogle Scholar
Veronis, G. 1981, Evolution of Physical Oceanography. Massachusetts Institute of Technology Press, 140Google Scholar