Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:03:57.431Z Has data issue: false hasContentIssue false

Mode selection in pulsating stars

Published online by Cambridge University Press:  18 February 2014

Radosław Smolec*
Affiliation:
Nicolaus Copernicus Astronomical Centre, ul. Bartycka 18, 00-716 Warszawa, Poland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review we focus on non-linear phenomena in pulsating stars: mode selection and amplitude limitation. Of many linearly excited modes, only a fraction is detected in pulsating stars. Which of them are excited, and why (the problem of mode selection), and to what amplitude (the problem of amplitude limitation) are intrinsically non-linear and still unsolved problems. Tools for studying these problems are briefly discussed and our understanding of mode selection and amplitude limitation in selected groups of self-excited pulsators is presented. We focus on classical pulsators (Cepheids and RR Lyrae stars) and main-sequence variables (δ Scuti and β Cephei stars). Directions of future studies are briefly discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Balona, L. A. & Dziembowski, W. A. 1999, MNRAS, 309, 221Google Scholar
Balona, L. A. & Dziembowski, W. A. 2011, MNRAS, 417, 591Google Scholar
Bono, G. & Stellingwerf, R. F. 1992, MemSAIt., 63, 357Google Scholar
Breger, M., Lenz, P., & Pamyatnykh, A. A. 2009, MNRAS, 396, 291CrossRefGoogle Scholar
Buchler, J. R. 2009, AIP-CP, 1170, 51Google Scholar
Buchler, J. R. & Goupil, M.-J. 1984, ApJ, 279, 394CrossRefGoogle Scholar
Buchler, J. R. & Kovács, G. 1986, ApJ, 308, 661Google Scholar
Christy, R. F. 1966, ApJ, 144, 108Google Scholar
Costa, J. E. S., Kepler, S. O., Winget, D. E., et al. 2008, A&A, 477, 627Google Scholar
Dziembowski, W. 1977, AcA, 27, 203Google Scholar
Dziembowski, W. 1982, AcA, 32, 147Google Scholar
Dziembowski, W. 1993, ASP-CS, 40, 521Google Scholar
Dziembowski, W. & Kovács, G. 1984, MNRAS, 206, 497CrossRefGoogle Scholar
Dziembowski, W. & Królikowska, M. 1985, AcA, 35, 5Google Scholar
Dziembowski, W. & Królikowska, M. 1990, AcA, 40, 19Google Scholar
Dziembowski, W., Królikowska, M., & Kosovichev, A. 1988, AcA, 38, 61Google Scholar
Feuchtinger, M. U. 1998, A&A, 337, 29Google Scholar
Geroux, C. M. & Deupree, R. G. 2013, ApJ, 771, 113Google Scholar
Kolláth, Z., Beaulieu, J. P., Buchler, J. R., & Yecko, P. 1998, ApJ, 502, L55Google Scholar
Kolláth, Z., Buchler, J. R., Szabó, R., & Csubry, Z. 2002, A&A, 385, 932Google Scholar
Kuhfuß, R. 1986, A&A, 160, 116Google Scholar
Lenz, P., Pamyatnykh, A. A., Breger, M., & Antoci, V. 2008, A&A, 478, 855Google Scholar
Lenz, P., Pamyatnykh, A. A., Zdravkov, T., & Breger, M. 2010, A&A, 509, A90Google Scholar
Moskalik, P. 2013, Ap&SS, 31, 103Google Scholar
Mundprecht, E., Muthsam, H. J., & Kupka, F. 2013, MNRAS, 435, 3191Google Scholar
Nowakowski, R. 2005, AcA, 55, 1Google Scholar
Poleski, R. 2013, ApJ, 778, 147CrossRefGoogle Scholar
Poretti, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85Google Scholar
Smolec, R. 2009, EAS Publ. Ser, 38, 175Google Scholar
Smolec, R. & Moskalik, P. 2007, MNRAS, 377, 645Google Scholar
Smolec, R. & Moskalik, P. 2008a, AcA, 58, 193Google Scholar
Smolec, R. & Moskalik, P. 2008b, AcA, 58, 233Google Scholar
Smolec, R. & Moskalik, P. 2010, A&A, 524, A40Google Scholar
Stellingwerf, R. F. 1974, ApJ, 192, 139Google Scholar
Stellingwerf, R. F. 1975, ApJ, 195, 441Google Scholar
Stellingwerf, R. F. 1978, AJ, 83, 1184Google Scholar
Stellingwerf, R. F. 1980, Lecture Notes in Physics, 125, 50Google Scholar
Stellingwerf, R. F. 1982, ApJ, 262, 330Google Scholar
Szabó, R., Kolláth, Z., & Buchler, J. R. 2004, A&A, 425, 627Google Scholar
Winget, D. E., Van Horn, H. M., & Hansen, C. J. 1981, ApJ, 245, L33Google Scholar