Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T20:14:37.382Z Has data issue: false hasContentIssue false

A minority view on the majority: A personal meeting summary on the explosion mechanism of supernovae

Published online by Cambridge University Press:  17 October 2017

Noam Soker*
Affiliation:
Department of Physics, Technion, Haifa, Israel email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present my minority view that the majority (or even all) of core collapse supernovae (CCSNe) are driven by jets rather than by neutrinos, and that the majority of type Ia supernovae (SN Ia) reach their explosion via the core degenerate scenario. New simulations presented at the meeting did not achieve an explosion of CCSNe. I critically examine other arguments that where presented in support of the neutrino-driven model, and present counter arguments that support the jet-driven explosion mechanism. The jets operate via a negative jet feedback mechanism (JFM). The negative feedback mechanism explains the explosion energy being several times the binding energy of the core in most CCSNe. We do not know yet what mechanism explodes massive stars and we do not know yet what evolutionary route leads white dwarfs to explode as SN Ia, and so we must be open to different ideas and critically examine old notions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Akashi, M., Sabach, E., Yogev, O., & Soker, N. 2015, MNRAS, 453, 2115 Google Scholar
Balick, B. 1987, AJ, 94, 671 Google Scholar
Bear, E. & Soker, N. 2017, MNRAS, in press (arXiv:1611.07327)Google Scholar
Fryer, C. L. 1999, ApJ, 522, 413 Google Scholar
Gilkis, A. 2016, arXiv:1608.05320Google Scholar
Gilkis, A., Soker, N., & Papish, O. 2016, ApJ, 826, 178 CrossRefGoogle Scholar
Górny, S. K., Schwarz, H. E., Corradi, R. L. M., & Van Winckel, H. 1999, A&AS, 136, 145 Google Scholar
Grefenstette, B. W., Fryer, C. L., Harrison, F. A., et al. 2017, ApJ, 834, 19 Google Scholar
Grefenstette, B. W., Harrison, F. A., Boggs, S. E., et al. 2014, Nature, 506, 339 Google Scholar
Grichener, A. & Soker, N. 2017, MNRAS, in pres (arXiv:1610.09647)Google Scholar
Kazeroni, R., Guilet, J., & Foglizzo, T. 2017, arXiv:1701.07029Google Scholar
Kushnir, D. 2015, arXiv:1506.02655Google Scholar
Larsson, J., Fransson, C., Spyromilio, J., et al. 2016, ApJ, 833, 147 Google Scholar
Lee, Y.-H., Koo, B.-C., Moon, D.-S., Burton, M. G., & Lee, J.-J. 2017, arXiv:1703.03551Google Scholar
Lentz, E. J., Bruenn, S. W., Hix, W. R., et al. 2015, ApJL, 807, L31 Google Scholar
Lopez, L. A., Ramirez-Ruiz, E., Castro, D., & Pearson, S. 2013, ApJ, 764, 50 Google Scholar
Mcley, L. & Soker, N. 2014, MNRAS, 445, 2492 Google Scholar
Müller, B. 2017, arXiv:1702.06940Google Scholar
Papish, O., Nordhaus, J., & Soker, N. 2015, MNRAS, 448, 2362 Google Scholar
Papish, O. & Soker, N. 2014, MNRAS, 443, 664 CrossRefGoogle Scholar
Roberts, L. F., Ott, C. D., Haas, R., et al. 2016, ApJ, 831, 98 Google Scholar
Schreier, R. & Soker, N. 2016, Research in Astronomy and Astrophysics, 16, 001 Google Scholar
Shelton, R., Kuntz, K., & Petre, R. 2004, ApJ, 611, 906 Google Scholar
Shiber, S., Kashi, A., & Soker, N. 2017, MNRAS, 465, L54 Google Scholar
Soker, N. 2010, MNRAS, 401, 2793 Google Scholar
Soker, N. 2016, New Astron. Rev., 75, 1 Google Scholar
Soker, N. 2017a, arXiv:1612.01912Google Scholar
Soker, N. 2017b, arXiv:1702.03451Google Scholar
Soker, N. & Kashi, A. 2013, ApJ, 764, L6 Google Scholar
Tsebrenko, D. & Soker, N. 2015, MNRAS, 447, 2568 Google Scholar
Uchiyama, Y., Funk, S., Katagiri, H., et al. 2012, ApJ, 749, L35 Google Scholar
Wongwathanarat, A., Müller, E., & Janka, H.-T. 2015, A&A, 577, A48 Google Scholar