Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T11:46:26.687Z Has data issue: false hasContentIssue false

The Milky Way nuclear star cluster beyond 1 pc

Published online by Cambridge University Press:  22 May 2014

A. Feldmeier*
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany
N. Neumayer
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany
A. Seth
Affiliation:
Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
P. T. de Zeeuw
Affiliation:
European Southern Observatory (ESO), Karl-Schwarzschild-Straße 2, 85748 Garching, Germany Sterrewacht Leiden, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
R. Schödel
Affiliation:
Instituto de Astrofísica de Andalucía (IAA)-CSIC, E-18008 Granada, Spain
N. Lützgendorf
Affiliation:
ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands
M. Kissler-Patig
Affiliation:
Gemini Observatory, 670 N. A'ohoku Place, Hilo, Hawaii, 96720, USA
S. Nishiyama
Affiliation:
National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588Japan
C. J. Walcher
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Within the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster, forming a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ∼75% of nearby galaxies. It is, however, not fully understood how nuclear clusters form. Because the Milky Way nuclear star cluster is at a distance of only 8 kpc, we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster a reference object for understanding the structure and assembly history of all nuclear star clusters.

We have obtained an unparalleled data set using the near-infrared long-slit spectrograph ISAAC (VLT) in a novel drift-scan technique to construct an integral-field spectroscopic map of the central ∼10 × 8 pc of our Galaxy. To complement our data set we also observed fields out to a distance of ∼19 pc along the Galactic plane to disentangle the influence of the nuclear stellar disk.

From this data set we extract a stellar kinematic map using the CO bandheads and an emission line kinematic map using H2 emission lines. Using the stellar kinematics, we set up a kinematic model for the Milky Way nuclear star cluster to derive its mass and constrain the central Galactic potential. Because the black hole mass in the Milky Way is precisely known, this kinematic data set will also serve as a benchmark for testing black hole mass modeling techniques used in external galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Böker, T., Laine, S., van der Marel, R. P., Sarzi, M., Rix, H.-W., Ho, L. C., & Shields, J. C. 2002, AJ 123, 1389Google Scholar
Böker, T., Sarzi, M., McLaughlin, D. E., van der Marel, R. P., Rix, H.-W., Ho, L. C., & Shields, J. C. 2004, AJ 127, 105Google Scholar
Cappellari, M. 2002, MNRAS 333, 400CrossRefGoogle Scholar
Cappellari, M. & Copin, Y. 2003, MNRAS 342, 354CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, PASP 116, 138CrossRefGoogle Scholar
Cappellari, M. 2008, MNRAS 390, 71Google Scholar
Carollo, C. M., Stiavelli, M., & de Zeeuw, P. T. 1998, AJ 116, 68Google Scholar
Côté, P., et al. 2006, APJS 165, 57Google Scholar
Feldmeier, A., et al., 2013 A&A 554, A63Google Scholar
Ferrarese, L., et al. 2006, ApJ 644, L21CrossRefGoogle Scholar
Ghez, A. M., et al. 2008, ApJ 689, 1044CrossRefGoogle Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., & Ott, T. 2009, ApJ 692, 1075CrossRefGoogle Scholar
Launhardt, R., Zylka, R., & Mezger, P. G. 2002, A&A 384, 112Google Scholar
Lützgendorf, N., Kissler-Patig, M., Gebhardt, K., Baumgardt, H., Noyola, E., Jalali, B., de Zeeuw, P. T., & Neumayer, N. 2012, A&A 542, A129Google Scholar
McGinn, M. T., Sellgren, K., Becklin, E. E., & Hall, D. N. B. 1989, ApJ 338, 824Google Scholar
Neumayer, N., Walcher, C. J., Andersen, D., Sánchez, S. F., Böker, T., & Rix, H.-W. 2011, MNRAS, 413, 1875CrossRefGoogle Scholar
Nishiyama, S., et al. 2006, ApJ 638, 839Google Scholar
Rossa, J., van der Marel, R. P., Böker, T., Gerssen, J., Ho, L. C., Rix, H.-W., Shields, J. C., & Walcher, C.-J. 2006, AJ 132, 1074CrossRefGoogle Scholar
Schödel, R., Najarro, F., Muzic, K., & Eckart, A. 2010, A&A 511, A18Google Scholar
Schödel, R., Kunneriath, D., Stolovy, S., Feldmeier, A., Neumayer, N., & Nishiyama, S.in prep.Google Scholar
Seth, A. C., Dalcanton, J. J., Hodge, P. W., & Debattista, V. P. 2006, AJ 132, 2539Google Scholar
Seth, A. C., et al. 2010, ApJ 714, 713CrossRefGoogle Scholar
Skrutskie, M. F., et al. 2006, AJ 131, 1163CrossRefGoogle Scholar
Stolovy, S., et al. 2006, JPhCS 54, 176Google Scholar
Walcher, C. J., et al. 2005, ApJ 618, 237CrossRefGoogle Scholar
Walcher, C. J., Böker, T., Charlot, S., Ho, L. C., Rix, H.-W., Rossa, J., Shields, J. C., & van der Marel, R. P. 2006, ApJ 649, 692CrossRefGoogle Scholar
Wallace, L. & Hinkle, K. 1996, ApJS 107, 312Google Scholar
Yusef-Zadeh, F., Stolovy, S. R., Burton, M., Wardle, M., & Ashley, M. C. B. 2001, ApJ 560, 749Google Scholar