Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T22:15:44.561Z Has data issue: false hasContentIssue false

MHD simulations of coronal dark downflows considering thermal conduction

Published online by Cambridge University Press:  12 September 2017

E. Zurbriggen
Affiliation:
Instituto de Astronomía Teórica y Experimental, CONICET, Córdoba, Argentina
A. Costa
Affiliation:
Instituto de Astronomía Teórica y Experimental, CONICET, Córdoba, Argentina Facultad de Ciencias Exactas, Físicas y Naturales, UNC, Argentina
A. Esquivel
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México
M. Schneiter
Affiliation:
Instituto de Astronomía Teórica y Experimental, CONICET, Córdoba, Argentina Facultad de Ciencias Exactas, Físicas y Naturales, UNC, Argentina
M. Cécere
Affiliation:
Instituto de Astronomía Teórica y Experimental, CONICET, Córdoba, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Asai, A., Yokoyama, T., Shimojo, M., & Shibata, K., 2004, ApJL, 605, L77 Google Scholar
Aschwanden, M. J. 2005, “Physics of the Solar Corona. An Introduction with Problems and Solutions” (Praxis Publishing Ltd., 2nd ed.2005)Google Scholar
Cécere, M., Schneiter, M., Costa, A., Elaskar, S., & Maglione, S., 2012, ApJ, 759, 79 CrossRefGoogle Scholar
Cécere, M., Zurbriggen, E., Costa, A., & Schneiter, M., 2015, ApJ, 807, 6 Google Scholar
Chen, C. J. & Lykoudis, P. S., 1972, SoPh, 25, 380 Google Scholar
Costa, A., Elaskar, S., Fernández, C. A., & Martínez, G., 2009, MNRAS, 400, L85 Google Scholar
Federrath, C., Roman-Duval, J., Klessen, R., & Schmidt, W., Mac Low, 2010, A&A, 512, A81 Google Scholar
Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273 Google Scholar
Hanneman, W. J. & Reeves, K. K., 2014, ApJ, 786, 95 CrossRefGoogle Scholar
Innes, D. E., McKenzie, D. E., & Wang, T. 2003, SoPh, 217: 247265 Google Scholar
Innes, D. E., Guo, L.-J., Bhattacharjee, A., Huang, Y.-M., & Schmit, D., 2014, ApJ, 796, 27 Google Scholar
Lazarian, A. & Vishniac, E. T., 1999, ApJ, 517, 700 CrossRefGoogle Scholar
Lee, D., Deane, A. E., & Federrath, C. 2009, AstroSocPacific Conference Series, Vol. 406, 243 Google Scholar
McKenzie, D. E. & Savage, S. L., 2009, ApJ, 697, 1569 Google Scholar
McKenzie, D. E., 2013, ApJ, 766, 39 Google Scholar
Nakamura, T. K. M., Fujimoto, M., & Otto, A., 2008, JGRA, 113, A09204 Google Scholar
Savage, S. L. & McKenzie, D. E., 2011, ApJ, 730, 98 Google Scholar
Savage, S. L., McKenzie, D. E., & Reeves, K. K., 2012, ApJL, 747, L40 CrossRefGoogle Scholar
Scott, R. B., McKenzie, D. E., & Longcope, D. W., 2016, ApJ, 819, 56 Google Scholar
Spitzer, L. 1962, “Physics of Fully Ionized Gases” (New York: Interscience, 2nd ed.1962)Google Scholar