Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T13:40:49.307Z Has data issue: false hasContentIssue false

Metallicity Gradients in the Halos of Elliptical Galaxies

Published online by Cambridge University Press:  09 May 2016

Jenny E. Greene
Affiliation:
Department of Astrophysics, Princeton University, Princeton, NJ 08544, USA
Chung-Pei Ma
Affiliation:
Department of Astronomy, University of California, Berkeley, CA 94720, USA
Andrew Goulding
Affiliation:
Department of Astrophysics, Princeton University, Princeton, NJ 08544, USA
Nicholas J. McConnell
Affiliation:
Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7, Canada
John P. Blakeslee
Affiliation:
Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7, Canada
Timothy Davis
Affiliation:
Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
Jens Thomas
Affiliation:
Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the stellar halos of massive elliptical galaxies, as revealed by our ambitious integral-field spectroscopic survey MASSIVE. We show that metallicity drops smoothly as a function of radius out to ~ 2.5 Re, while the [α/Fe] abundance ratios stay flat. The stars in the outskirts likely formed rapidly (to explain the high ratio of alpha to Fe) but in a relatively shallow potential (to explain the low metallicities). This is consistent with expectations for a two-phase growth of massive galaxies, in which the second phase involves accretion of small satellites. We also show some preliminary study of the gas content of these most MASSIVE galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Arnold, J. A., Romanowsky, A. J., Brodie, J. P., Forbes, D. A., Strader, J., Spitler, L. R., Foster, C., Blom, C., Kartha, S. S., Pastorello, N., Pota, V., Usher, C., & Woodley, K. A. 2014, ApJ, 791, 80Google Scholar
Cappellari, M., Emsellem, E., Krajnović, D., McDermid, R. M., Serra, P., Alatalo, K., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Khochfar, S., Kuntschner, H., Lablanche, P.-Y., Morganti, R., Naab, T., Oosterloo, T., Sarzi, M., Scott, N., Weijmans, A.-M., & Young, L. M. 2011, MNRAS, 416, 1680Google Scholar
Carollo, C. M., & Danziger, I. J. 1994, MNRAS, 270, 743Google Scholar
Carollo, C. M., Danziger, I. J., & Buson, L. 1993, MNRAS, 265, 553Google Scholar
Crnojević, D., Ferguson, A. M. N., Irwin, M. J., Bernard, E. J., Arimoto, N., Jablonka, P., & Kobayashi, C. 2013, MNRAS, 432, 832Google Scholar
Crook, A. C., Huchra, J. P., Martimbeau, N., Masters, K. L., Jarrett, T., & Macri, L. M. 2007, ApJ, 655, 790Google Scholar
Davis, T. A., et al. 2011, MNRAS, 417, 882Google Scholar
D'Souza, R., Kauffman, G., Wang, J., & Vegetti, S. 2014, MNRAS, 443, 1433Google Scholar
Faber, S. M., & Jackson, R. E. 1976, ApJ, 204, 668Google Scholar
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009, ApJ, 693, 486Google Scholar
Greene, J. E., Janish, R., Ma, C.-P., McConnell, N. J., Blakeslee, J. P., Thomas, J., & Murphy, J. D. 2015, ApJ, 807, 11Google Scholar
Greene, J. E., Murphy, J. D., Graves, G. J., Gunn, J. E., Raskutti, S., Comerford, J. M., & Gebhardt, K. 2013, ApJ, 776, 64Google Scholar
Harris, G. L. H., Harris, W. E., & Poole, G. B. 1999, AJ, 117, 855Google Scholar
Harris, W. E., Harris, G. L. H., Layden, A. C., & Wehner, E. M. H. 2007, ApJ, 666, 903Google Scholar
Hill, G. J., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference SeriesGoogle Scholar
Hirschmann, M., Naab, T., Ostriker, J. P., Forbes, D. A., Duc, P.-A., Davé, R., Oser, L., & Karabal, E. 2015, MNRAS, 449, 528Google Scholar
Kalirai, J. S., et al. 2006, ApJ, 648, 389Google Scholar
Kelson, D. D., Illingworth, G. D., Franx, M., & van Dokkum, P. G. 2006, ApJ, 653, 159Google Scholar
Kim, D.-W., & Fabbiano, G. 2015, ApJ, accepted (arXiv:1504.00899)Google Scholar
Knapp, G. R., Guhathakurta, P., Kim, D.-W., & Jura, M. A. 1989, ApJS, 70, 329Google Scholar
Kobayashi, C. 2004, MNRAS, 347, 740Google Scholar
Ma, C.-P., Greene, J. E., McConnell, N., Janish, R., Blakeslee, J. P., Thomas, J., & Murphy, J. D. 2014, ApJ, 795, 158Google Scholar
Mehlert, D., Thomas, D., Saglia, R. P., Bender, R., & Wegner, G. 2003, A&A, 407, 423Google Scholar
Murphy, J. D., Gebhardt, K., & Adams, J. J. 2011, ApJ, 729, 129Google Scholar
Naab, T., Oser, L., Emsellem, E., Cappellari, M., Krajnović, D., McDermid, R. M., Alatalo, K., Bayet, E., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Crocker, A., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P.-A., Hirschmann, M., Johansson, P. H., Khochfar, S., Kuntschner, H., Morganti, R., Oosterloo, T., Sarzi, M., Scott, N., Serra, P., Ven, G. v. d., Weijmans, A., & Young, L. M. 2014, MNRAS, 444, 3357Google Scholar
Negri, A., Ciotti, L., & Pellegrini, S. 2014, MNRAS, 439, 823Google Scholar
Pastorello, N., Forbes, D. A., Foster, C., Brodie, J. P., Usher, C., Romanowsky, A. J., Strader, J., & Arnold, J. A. 2014, MNRAS, 442, 1003Google Scholar
Peacock, M. B., Strader, J., Romanowsky, A. J., & Brodie, J. P. 2015, ApJ, 800, 13Google Scholar
Pu, S.-B., & Han, Z.-W. 2011, Research in Astronomy and Astrophysics, 11, 909Google Scholar
Pu, S. B., Saglia, R. P., Fabricius, M. H., Thomas, J., Bender, R., & Han, Z. 2010, A&A, 516, A4Google Scholar
Raskutti, S., Greene, J. E., & Murphy, J. D. 2014, ApJ, 786, 23Google Scholar
Rejkuba, M., Greggio, L., Harris, W. E., Harris, G. L. H., & Peng, E. W. 2005, ApJ, 631, 262Google Scholar
Röttgers, B., Naab, T., & Oser, L. 2014, MNRAS, 445, 1065Google Scholar
Sarzi, M., Alatalo, K., Blitz, L., Bois, M., Bournaud, F., Bureau, M., Cappellari, M., Crocker, A., Davies, R. L., Davis, T. A., de Zeeuw, P. T., Duc, P.-A., Emsellem, E., Khochfar, S., Krajnović, D., Kuntschner, H., Lablanche, P.-Y., McDermid, R. M., Morganti, R., Naab, T., Oosterloo, T., Scott, N., Serra, P., Young, L. M., & Weijmans, A.-M. 2013, MNRAS, 432, 1845Google Scholar
Sarzi, M., et al. 2010, MNRAS, 402, 2187Google Scholar
Spolaor, M., Kobayashi, C., Forbes, D. A., Couch, W. J., & Hau, G. K. T. 2010, MNRAS, 408, 272Google Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., Tout, C. A., Hill, V., & Tolstoy, E. 2004, AJ, 128, 1177Google Scholar
Weijmans, A.-M., et al. 2009, MNRAS, 398, 561Google Scholar
White, S. D. M. 1980, MNRAS, 191, 1PGoogle Scholar
Williams, B. F., Dalcanton, J. J., Gilbert, E. F. B. M., Guhathakurta, P., Dorman, C., Lauer, T. R., Seth, A. C., Kalirai, J. S., Rosenfield, P., & Girardi, L. 2015, ApJ, accepted (arXiv:1501.06631)Google Scholar
Wu, X., Gerhard, O., Naab, T., Oser, L., Martinez-Valpuesta, I., Hilz, M., Churazov, E., & Lyskova, N. 2014, MNRAS, 438, 2701Google Scholar