Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T15:18:37.347Z Has data issue: false hasContentIssue false

The metallicity dependence of WR winds

Published online by Cambridge University Press:  28 July 2017

R. Hainich
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany email: [email protected]
T. Shenar
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany email: [email protected]
A. Sander
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany email: [email protected]
W.-R. Hamann
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany email: [email protected]
H. Todt
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Phys. Rev. Lett., 116, 061102 CrossRefGoogle Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Phys. Rev. Lett., 116, 241103 CrossRefGoogle Scholar
Crowther, P. A. 2006, in ASP-CS, Vol. 353, Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology, ed. Lamers, H. J. G. L. M., Langer, N., Nugis, T., & Annuk, K., 157Google Scholar
Cunha, K., Sellgren, K., Smith, V. V., et al. 2007, ApJ, 669, 1011 CrossRefGoogle Scholar
Dessart, L., Hillier, D. J., Livne, E., et al. 2011, MNRAS, 414, 2985 CrossRefGoogle Scholar
Gräfener, G. & Hamann, W.-R., 2008, A&A, 482, 945 Google Scholar
Groh, J. H., Georgy, C., & Ekström, S., 2013, A&A, 558, L1 Google Scholar
Hainich, R., Pasemann, D., Todt, H., et al. 2015, A&A, 581, A21 Google Scholar
Hainich, R., Rühling, U., Todt, H., et al. 2014, A&A, 565, A27 Google Scholar
Hamann, W.-R., Gräfener, G., & Liermann, A., 2006, A&A, 457, 1015 Google Scholar
Hayden, M. R., Bovy, J., Holtzman, J. A., et al. 2015, ApJ, 808, 132 CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H., 2003, ApJ, 591, 288 CrossRefGoogle Scholar
Kudritzki, R.-P., Lennon, D. J., & Puls, J. 1995, in Science with the VLT, ed. Walsh, J. R. & Danziger, I. J., 246CrossRefGoogle Scholar
Kudritzki, R. P., Puls, J., Lennon, D. J., et al. 1999, A&A, 350, 970 Google Scholar
Liermann, A., Hamann, W.-R., Oskinova, L. M., Todt, H., & Butler, K., 2010, A&A, 524, A82 Google Scholar
Martins, F., Hillier, D. J., Paumard, T., et al. 2008, A&A, 478, 219 Google Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603 Google Scholar
Najarro, F., Figer, D. F., Hillier, D. J., Geballe, T. R., & Kudritzki, R. P., 2009, ApJ, 691, 1816 CrossRefGoogle Scholar
Niedzielski, A., Nugis, T., & Skorzynski, W., 2004, AcA, 54, 405 Google Scholar
Nugis, T., Annuk, K., & Hirv, A., 2007, Baltic Astronomy, 16, 227 Google Scholar
Oskinova, L. M., Steinke, M., Hamann, W.-R., et al. 2013, MNRAS, 436, 3357 CrossRefGoogle Scholar
Puls, J., Kudritzki, R.-P., Herrero, A., et al. 1996, A&A, 305, 171 Google Scholar
Ryde, N. & Schultheis, M., 2015, A&A, 573, A14 Google Scholar
Sander, A., Hamann, W.-R., & Todt, H., 2012, A&A, 540, A144 Google Scholar
Sander, A., Todt, H., Hainich, R., & Hamann, W.-R., 2014, A&A, 563, A89 Google Scholar
Shenar, T., Hainich, R., Todt, H., et al. 2016, A&A, 591, A22 Google Scholar
Todt, H., Sander, A., Hainich, R., et al. 2015, A&A, 579, A75 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 2001, A&A, 369, 574 Google Scholar
Vink, J. S. & de Koter, A., 2005, A&A, 442, 587 Google Scholar