Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:55:58.587Z Has data issue: false hasContentIssue false

Mergers and Disk Survival in ΛCDM

Published online by Cambridge University Press:  01 June 2008

James S. Bullock
Affiliation:
Center for Cosmology, Department of Physics and Astronomy, The University of California, Irvine, CA 92697USA
Kyle R. Stewart
Affiliation:
Center for Cosmology, Department of Physics and Astronomy, The University of California, Irvine, CA 92697USA
Chris W. Purcell
Affiliation:
Center for Cosmology, Department of Physics and Astronomy, The University of California, Irvine, CA 92697USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Disk galaxies are common in our universe and this is a source of concern for hierarchical formation models like ΛCDM. Here we investigate this issue as motivated by raw merger statistics derived for galaxy-size dark matter halos from ΛCDM simulations. Our analysis shows that a majority (~ 70%) of galaxy halos with M0 = 1012M at z = 0 should have accreted at least one object with mass m > 1011M ≃ 3 Mdisk over the last 10 Gyr. Mergers involving larger objects m ≳ 3 × 1011M should have been very rare for Milky-Way size halos today, and this pinpoints m/M ~ 0.1 mass-ratio mergers as the most worrying ones for the survival of thin galactic disks. Motivated by these results, we use use high-resolution, dissipationless N-body simulations to study the response of stellar Milky-Way type disks to these common mergers and show that thin disks do not survive the bombardment. The remnant galaxies are roughly three times as thick and twice as kinematically hot as the observed thin disk of the Milky Way. Finally, we evaluate the suggestion that disks may be preserved if the mergers involve gas-rich progenitors. Using empirical measures to assign stellar masses and gas masses to dark matter halos as a function of redshift, we show that the vast majority of large mergers experienced by 1012M halos should be gas-rich (fgas > 0.5), suggesting that this is a potentially viable solution to the disk formation conundrum. Moreover, gas-rich mergers should become increasingly rare in more massive halos > 1012.5M, and this suggest that merger gas fractions may play an important role in establishing morphological trends with galaxy luminosity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Benson, A. J. 2005, MNRAS, 358, 551CrossRefGoogle Scholar
Brook, C. B., Kawata, D., Gibson, B. K. & Freeman, K. C. 2004, ApJ, 612, 894CrossRefGoogle Scholar
Choi, Y.-Y., Park, C., & Vogeley, M. S. 2007, ApJ, 658, 884CrossRefGoogle Scholar
Erb, D. K., Steidel, C. C., Shapley, A. E., Pettini, M., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 646, 107CrossRefGoogle Scholar
Fall, S. M. & Efstathiou, G. 1980, MNRAS, 193, 189CrossRefGoogle Scholar
Förster Schreiber, N. M., et al. 2006, ApJ, 645, 1062CrossRefGoogle Scholar
Genzel, R., et al. 2006, Nature, 442, 786CrossRefGoogle Scholar
Hopkins, P. F., Cox, T. J., Younger, J. D., & Hernquist, L. 2008, arXiv:0806.1739Google Scholar
Ilbert, , et al. 2006, A & A, 453, 809CrossRefGoogle Scholar
Jurić, M. et al. 2008, ApJ, 673, 864CrossRefGoogle Scholar
Kannappan, S. J. 2004, ApJ, 611, L89CrossRefGoogle Scholar
Kazantzidis, S., Bullock, J. S., Zentner, A. R., Kravtsov, A. V., & Moustakas, L. A. 2008, ApJ, accepted, arXiv:0708.1949Google Scholar
Khochfar, S. & Burkert, A. 2006, A & A, 445, 403CrossRefGoogle Scholar
Kormendy, J. & Fisher, D. B. 2005, in Revista Mexicana de Astronomia y Astrofisica Conference Series, Vol. 23, Revista Mexicana de Astronomia y Astrofisica Conference Series, ed. Torres-Peimbert, S. & MacAlpine, G., 101–108Google Scholar
McGaugh, S. S. 2005, ApJ, 632, 859CrossRefGoogle Scholar
Mestel, L. 1963, MNRAS, 126, 553CrossRefGoogle Scholar
Mo, H. J., Mao, S., & White, S. D. M. 1998, MNRAS, 295, 319CrossRefGoogle Scholar
Nordström, B. et al. 2004, A & A, 418, 989CrossRefGoogle Scholar
Purcell, C. W., Kazantzidis, S., & Bullock, J. S. 2008, arXiv:0810.2785Google Scholar
Robertson, B. E. & Bullock, J. S. 2008, ApJL, 685, L27CrossRefGoogle Scholar
Robertson, B., Bullock, J. S., Cox, T. J., Di Matteo, T., Hernquist, L., Springel, V., & Yoshida, N. 2006, ApJ, 645, 986CrossRefGoogle Scholar
Stadel, J. G. 2001, Ph.D. Thesis.Google Scholar
Stewart, K. R., Bullock, J. S., Wechsler, R. H., Maller, A. H., & Zentner, A. R. 2008a, ApJ, 683, 597CrossRefGoogle Scholar
Stewart, K. R., Bullock, J. S., Barton, E., & Wechsler, R. H. 2008b, ApJ, submittedGoogle Scholar
Stewart, K. R., Bullock, J. S. et al. 2009, in preparationGoogle Scholar
Toth, G. & Ostriker, J. P. 1992, ApJ, 389, 5CrossRefGoogle Scholar
van den Bosch, F. C. et al. 2007, MNRAS, 376, 841CrossRefGoogle Scholar
Weinmann, S. M., van den Bosch, F. C., Yang, X., & Mo, H. J. 2006, MNRAS, 366, 2CrossRefGoogle Scholar
Widrow, L. M., Pym, B., & Dubinski, J. 2008, ApJ, 679, 1239CrossRefGoogle Scholar
Wright, S. A., Larkin, J. E., Law, D. R., Steidel, C. C., Shapley, A. E., & Erb, D. K. 2008, arXiv:0810.5599Google Scholar
Wyse, R. F. G. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 230, Galaxy Disks and Disk Galaxies, ed. Funes, J. G., & Corsini, E. M., 71–80Google Scholar