Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T00:32:22.390Z Has data issue: false hasContentIssue false

Megamaser Cosmology Project II : The prospects for measuring a 1% Ho and distances to high-z galaxies

Published online by Cambridge University Press:  07 February 2024

Cheng-Yu Kuo*
Affiliation:
Physics Department, National Sun Yat-Sen University, No. 70, Lien-Hai Road, Kaosiung City 80424, Taiwan, R.O.C. Academia Sinica Institute of Astronomy and Astrophysics, PO Box 23-141, Taipei 10617, Taiwan, R.O.C.
Dominic Pesce
Affiliation:
Center for Astrophysics — Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA Black Hole Initiative at Harvard University, 20 Garden Street, Cambridge, MA 02138, USA
Violetta Impellizzeri
Affiliation:
Leiden Observatory, Leiden, the Netherlands
James Braatz
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
Mark Reid
Affiliation:
Center for Astrophysics — Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

H2O megamaser emission from sub-parsec circumnuclear disks at the center of active galaxies allows a single-step, direct distance measurements to galaxies in the Hubble flow without any external calibration. Based on accurate distance determinations of six maser galaxies within 150 Mpc, the Megamaser Cosmology Project (MCP) team recently obtained H0 = 73.9± 3.0 km/s/Mpc (‘∼ 4% accuracy), independent of distance ladders and the cosmic microwave background. To further applying the megamaser technique to attain a 1% Ho measurement, detecting more high-quality disk maser systems is crucial. In this conference proceeding, we update the status of the MCP and discuss strategies of detecting additional high-quality disk maser galaxies within z ∼ 0.1. In addition, we show the prospects of reaching a 1% Ho measurement with the supreme sensitivity of the ngVLA. Finally, we demonstrate that applying the maser technique to distance measurements of high-z galaxies with future submm VLBI systems is promising and this will allow for investigation of the new tension between the ΛCDM model and the high-z Hubble diagram.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abdalla, E., Abellán, G., Aboubrahim, A. et al. 2022, JHEAp, 34, 49Google Scholar
Argon, A. L., Greenhill, L. J., Reid, M. J., Moran, J. M., Humphreys, E. M. L. 2007, ApJ, 659, 1040 10.1086/512718CrossRefGoogle Scholar
Braatz, J. A., Reid, M. J., Humphreys, E. M. L., Henkel, C., Condon, J. J., Lo, K. Y. 2010, ApJ, 718, 657 10.1088/0004-637X/718/2/657CrossRefGoogle Scholar
Braatz, J., Pesce, D., Condon, J., Reid, M. 2019, BAAS, 51, 446 Google Scholar
Brightman, M., Nandra, K., Salvato, M., Hsu, L.-T., Aird, J.; Rangel, C. 2014, MNRAS, 443, 1999 10.1093/mnras/stu1175CrossRefGoogle Scholar
de Jong, T. 1973, A&A, 26, 297 10.3406/bupsy.1973.10386CrossRefGoogle Scholar
Gao, F., Braatz, J. A., Reid, M. J. et al. 2017, ApJ, 834, 52 10.3847/1538-4357/834/1/52CrossRefGoogle Scholar
Gilli, R., Norman, C., Calura, F. et al. 2022, A&A, 666, 17 10.1051/0004-6361/202243708CrossRefGoogle Scholar
Gray, M. D., Baudry, A., Richards, A. M. S. et al. 2016, MNRAS, 456, 374 10.1093/mnras/stv2437CrossRefGoogle Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J. et al. 1999, Nature, 400, 539 10.1038/22972CrossRefGoogle Scholar
Karwal & Kamionkowski 2016, PhRvD, 94, 103523 10.1103/PhysRevD.94.103523CrossRefGoogle Scholar
King, A. L., Davis, T. M., Denney, K. D., Vestergaard, M., Watson, D. 2014, MNRAS, 441, 3454 10.1093/mnras/stu793CrossRefGoogle Scholar
Kormendy & Ho 2013, ARA&A, 51, 511 10.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Kuo, C. Y., Braatz, J. A., Reid, M. J. et al. 2013, ApJ, 767, 155 10.1088/0004-637X/767/2/155CrossRefGoogle Scholar
Kuo, C. Y., Braatz, J. A., Lo, K. Y et al. 2015, ApJ, 800, 26 10.1088/0004-637X/800/1/26CrossRefGoogle Scholar
Kuo, C. Y., Braatz, J. A., Impellizzeri, C. M. V. et al. 2020, ApJ, 892, 18 Google Scholar
Li, Z., Huang, L., Wang, J. 2022, MNRAS, 517, 1901 10.1093/mnras/stac2735CrossRefGoogle Scholar
Lanzuisi, G., Piconcelli, E., Fiore, F. et al. 2009, A&A, 498, 67 10.1051/0004-6361/200811282CrossRefGoogle Scholar
Lo 2005, ARA&A, 43, 62510.1146/annurev.astro.41.011802.094927CrossRefGoogle Scholar
Lusso, E., Piedipalumbo, E., Risaliti, G. et al. 2019, A&A, 628, 4 10.1051/0004-6361/201936223CrossRefGoogle Scholar
Pesce, D. W., Braatz, J. A., Condon, J. J. et al. 2015, ApJ, 810, 65 10.1088/0004-637X/810/1/65CrossRefGoogle Scholar
Pesce, D. W., Braatz, J. A., Reid, M. J. et al. 2020, ApJ, 891, 1 10.3847/2041-8213/ab75f0CrossRefGoogle Scholar
Collaboration, Planck et al. 2020, A&A, 641, 6 Google Scholar
Raveri 2020, RhRvD, 101, 083524 10.1103/PhysRevD.101.083524CrossRefGoogle Scholar
Reid, M. J., Braatz, J. A., Condon, J. J., Greenhill, L. J., Henkel, C., Lo, K. Y. 2009, ApJ, 695, 287 10.1088/0004-637X/695/1/287CrossRefGoogle Scholar
Reid, M. J., Braatz, J. A., Condon, J. J. et al. 2013, ApJ, 767, 154 10.1088/0004-637X/767/2/154CrossRefGoogle Scholar
Riess, A. G., Casertano, S., Yuan, W. et al. 2019, ApJ, 876, 85 10.3847/1538-4357/ab1422CrossRefGoogle Scholar
Di Valentino, E., Mena, O., Pan, S. et al. 2021, Class. Quantum Grav. 38 153001 10.1088/1361-6382/ac086dCrossRefGoogle Scholar
Vestergaard & Osmer 2009, ApJ, 699, 800 10.1088/0004-637X/699/1/800CrossRefGoogle Scholar
Wong, K. C., Suyu, S. H., Chen, G. C.-F. et al. 2020, MNRAS, 498, 1420 10.1038/s41436-020-0805-6CrossRefGoogle Scholar
Yang, W., Di Valentino, E., Pan, S., Wu, Y., Lu, J. 2021, MNRAS, 501, 5845 10.1093/mnras/staa3914CrossRefGoogle Scholar