Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T01:54:44.005Z Has data issue: false hasContentIssue false

Mechanisms of planetary and stellar dynamos

Published online by Cambridge University Press:  18 July 2013

Emmanuel Dormy
Affiliation:
CNRS, Equipe MAG (ENS-IPGP), LRA, Département de Physique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France email: [email protected]
Ludovic Petitdemange
Affiliation:
CNRS, Equipe MAG (ENS-IPGP), LRA, Département de Physique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France email: [email protected]
Martin Schrinner
Affiliation:
CNRS, Equipe MAG (ENS-IPGP), LRA, Département de Physique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review some of the recent progress on modeling planetary and stellar dynamos. Particular attention is given to the dynamo mechanisms and the resulting properties of the field. We present direct numerical simulations using a simple Boussinesq model. These simulations are interpreted using the classical mean-field formalism. We investigate the transition from steady dipolar to multipolar dynamo waves solutions varying different control parameters, and discuss the relevance to stellar magnetic fields. We show that owing to the role of the strong zonal flow, this transition is hysteretic. In the presence of stress-free boundary conditions, the bistability extends over a wide range of parameters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Browning, M. K. M. S., Miesch, A. S., & Brun, J. Toomre, Astrophys. J. L. 648, L157L160 (2006)CrossRefGoogle Scholar
Browning, M., Proceedings IAU Symposium 271 (2010)Google Scholar
Dormy, E., Soward, A.M. (Eds), Mathematical Aspects of Natural dynamos, CRC-press (2007)CrossRefGoogle Scholar
Gastine, T. L. & Duarte, J. Wicht, A&A 546, A19 (2012)Google Scholar
Gilman, P. A., Astr. Phys. Sup. Ser. 53, 243268 (1983)CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H., Nature 377, 203209 (1995)CrossRefGoogle Scholar
Goudard, L. & Dormy, E., Europhysics Letters (EPL), 83, 59001 (2008)CrossRefGoogle Scholar
Morin, V. & Dormy, E., International Journal of Modern Physics B, 23, 54675482 (2009)CrossRefGoogle Scholar
Morin, J. E. Dormy, Schrinner, M., & Donati, J.-F., Monthly Notices of the Royal Astronomical Society: Letters, 418, 1, L133L137 (2011)CrossRefGoogle Scholar
Roberts, P. H., Phil. Trans. Roy. Soc., A 272, 1230, 663698 (1972)Google Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M., & Christensen, U. R. Geophys. Astrophys. Fluid Dyn. 101 81116 (2007)CrossRefGoogle Scholar
Schrinner, M., Schmitt, D., Cameron, R., & Hoyng, P., Geophys. J. Int., 182, 675 (2010)CrossRefGoogle Scholar
Schrinner, M. L. & Petitdemange, E. Dormy, A&A 530, A140 (2011)Google Scholar
Schrinner, M., A&A 533, A108 (2011)Google Scholar
Schrinner, M. L. & Petitdemange, E. Dormy, ApJ Astrophysical Journal (ApJ) 752, 121 (2012)CrossRefGoogle Scholar
Simitev, R., Busse, F. H. & Kosovichev, A. G., Procs 2010 CTR Summer Program, Moin, P. (ed.), pp. 475484, Stanford University (2010)Google Scholar
Simitev, R., Busse, F. H., Phys. Scr., 86, 018409 (2012)CrossRefGoogle Scholar
Tobias, S. & Weiss, N. O. in Mathematical Aspects of Natural dynamos, Dormy, E., Soward, A. M. (Eds), CRC-press (2007)Google Scholar
Zhang, K. & Schubert, G., Rep. Prog. Phys, 69, 15811605 (2006)CrossRefGoogle Scholar