Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T13:02:08.923Z Has data issue: false hasContentIssue false

Measuring and Decoding Gravito-Inertial Modes in Intermediate- and High-Mass Stars

Published online by Cambridge University Press:  29 August 2019

C. Aerts
Affiliation:
Institute of Astronomy, KU, Leuven, Belgium email: [email protected] Department of Astrophysics, IMAPP, Radboud University Nijmegen, The Netherlands
M. G. Pedersen
Affiliation:
Institute of Astronomy, KU, Leuven, Belgium email: [email protected]
T. Van Reeth
Affiliation:
Institute of Astronomy, KU, Leuven, Belgium email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This talk discussed the basics of gravito-inertial asteroseismology as recently developed for stars born with a convective core. Photometric space missions originally built for exoplanet hunting, notably Kepler, have opened up the low-frequency regime of stellar oscillations and revealed a larger diversity in variability than anticipated prior to the era of high-precision space photometry. The talk explained the basics of forward seismic modelling based on gravito-inertial modes, which probe the deep stellar interior. It described how a hierarchical fitting approach allows us to derive the near-core rotation period, the amount and shape of convective core overshooting, and the level of chemical mixing in the radiative envelope for stars born with a convective core and burning hydrogen in their core. A summary of the current status, covering the mass range 1.4 ≲ M ≲ 5 M, is provided here through references to numerous recent papers.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Aerts, C., Van Reeth, T., & Tkachenko, A. 2017, ApJ, 847, L7CrossRefGoogle Scholar
Beck, P. G., Montalban, J., Kallinger, T., et al. 2012, Nature, 481, 55CrossRefGoogle Scholar
Bedding, T. R., Mosser, B., Huber, D., et al. 2011, Nature, 471, 608CrossRefGoogle Scholar
Bouabid, M.-P., Dupret, M.-A., Salmon, , et al. 2013, MNRAS, 429, 2500CrossRefGoogle Scholar
Chaplin, W. J. & Miglio, A. 2013, ARAA, 51, 353CrossRefGoogle Scholar
Degroote, P., Aerts, C., Baglin, A., et al. 2010, Nature, 464, 259CrossRefGoogle Scholar
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368CrossRefGoogle Scholar
Hekker, S. & Christensen-Dalsgaard, J. 2017, A&AR, 25, 1Google Scholar
Kallinger, T., Weiss, W. W., Beck, P. G., et al. 2017, A&A, 603, A13Google Scholar
Kawaler, S. D., Sekii, T., & Gough, D. 1999, ApJ, 516, 349CrossRefGoogle Scholar
Kollmeier, J. A., Zasowski, G., Rix, H.-W., et al. 2017, arXiv:1711.03234Google Scholar
Kurtz, D. W., Saio, H., Takata, M., et al. 2014, MNRAS, 444, 102CrossRefGoogle Scholar
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars (Springer)CrossRefGoogle Scholar
Moravveji, E., Aerts, C., Pápics, P. I., Triana, S. A., & Vandoren, B. 2015, A&A, 580, A27Google Scholar
Moravveji, E., Townsend, R. H. D., Aerts, C., & Mathis, S. 2016, ApJ, 823, 130CrossRefGoogle Scholar
Mosser, B., Benomar, O., Belkacem, K., et al. 2014, A&A, 572, L5Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10Google Scholar
Ouazzani, R.-M., Salmon, S. J. A. J., Antoci, V., et al. 2017, MNRAS, 465, 2294CrossRefGoogle Scholar
Pápics, P. I., Briquet, M., Baglin, A., et al. 2012, A&A, 542, A55Google Scholar
Pápics, P. I., Tkachenko, A., Van Reeth, T., et al. 2017, A&A, 598, A74Google Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3CrossRefGoogle Scholar
Pedersen, M. G., Aerts, C., Pápics, P. I., & Rogers, T. M. 2018, A&A, 614, A128Google Scholar
Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249CrossRefGoogle Scholar
Ricker, G. R., Vanderspek, R., Winn, J., et al. 2016, Proc. SPIE, 9904Google Scholar
Rogers, T. M. & McElwaine, J. N. 2017, ApJ, 848, L1CrossRefGoogle Scholar
Saio, H., Kurtz, D. W., Takata, M., et al. 2015, MNRAS, 447, 3264CrossRefGoogle Scholar
Saio, H., Kurtz, D. W., Murphy, S. J., et al. 2018, MNRAS, 474, 2774CrossRefGoogle Scholar
Szewczuk, W., & Daszyska-Daszkiewicz, J. 2017, MNRAS, 469, 13CrossRefGoogle Scholar
Van Reeth, T., Tkachenko, A., Aerts, C., et al. 2015, ApJS, 218, 27CrossRefGoogle Scholar
Van Reeth, T., Tkachenko, A., & Aerts, C. 2016, A&A, 593, A120Google Scholar
Van Reeth, T., Mombarg, J. S. G., Mathis, S., et al. 2018, A&A, 618, A24Google Scholar
Zwintz, K., Moravveji, E., Pápics, P. I., et al. 2017, A&A, 601, A101Google Scholar