Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T17:15:19.956Z Has data issue: false hasContentIssue false

Measurement of the cosmological distance scale using X-ray and Sunyaev–Zel'dovich effect observations of galaxy clusters

Published online by Cambridge University Press:  26 February 2013

Massimiliano Bonamente
Affiliation:
University of Alabama in Huntsville, USA email: [email protected]
John Carlstrom
Affiliation:
University of Chicago, USA
Eric Leitch
Affiliation:
California Institute of Technology and Owens Valley Radio Observatory, USA
Marshall Joy
Affiliation:
NASA Marshall Space Flight Center, USA
Daniel Marrone
Affiliation:
University of Arizona, USA
Adam Mantz
Affiliation:
University of Chicago, USA
Stephen Muchovej
Affiliation:
California Institute of Technology and Owens Valley Radio Observatory, USA
Thomas Plagge
Affiliation:
University of Chicago, USA
Erik Reese
Affiliation:
University of Pennsylvania, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray and Sunyaev–Zeldovich effect (SZE) observations of galaxy clusters can be used to measure their distances independently of the cosmic distance ladder. We have determined the distance to 38 clusters of galaxies in the redshift range 0.14 ≤ z ≤ 0.89 using X-ray data from the Chandra X-ray Observatory and SZE data from the Owens Valley Radio Observatory and the Berkeley–Illinois–Maryland Association interferometric arrays. We measure a Hubble constant of H0 = 76.9+3.9−3.4+10.0−8.0 km s−1 Mpc−1 (statistical followed by systematic uncertainties at 68% confidence) for an ΩM=0.3, ΩΛ=0.7 cosmology. Our determination of the Hubble parameter in the distant Universe agrees with measurements from the Hubble Space Telescope Key Project that probed the nearby Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Ade, P. A. R., Aghanim, N., & Arnaud, M., 2011, A&A, 536, A8Google Scholar
Allen, S. W., Rapetti, D. A., Schmidt, R. W., Ebeling, H., Morris, R. G., & Fabian, A. C. 2008, MNRAS, 383, 879CrossRefGoogle Scholar
Arnaud, M., Pratt, G. W., Piffaretti, R., Böhringer, H., Croston, J. H., & Pointecouteau, E. 2010, A&A, 517, A92Google Scholar
Birkinshaw, M. 1999, Phys. Rep., 310, 97Google Scholar
Bonamente, M., Hasler, N., Bulbul, E., et al. 2012, New J. Phys., 14, 025010Google Scholar
Bonamente, M., Joy, M. K., LaRoque, S. J., Carlstrom, J. E., Reese, E. D., & Dawson, K. S. 2006, ApJ, 647, 25Google Scholar
Bulbul, G. E., Hasler, N., Bonamente, M., & Joy, M. 2010, ApJ, 720, 1038Google Scholar
Carlstrom, J. E., Holder, G. P., & Reese, E. D. 2002, ARA&A, 40, 643Google Scholar
Carroll, S. M., Press, W. H., & Turner, E. L. 1992, ARA&A, 30, 499Google Scholar
Culverhouse, T. L., Bonamente, M., Bulbul, E., et al. 2010, ApJ, 723, L78CrossRefGoogle Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2012, ApJ, 758, 24Google Scholar
Hincks, A. D., Acquaviva, V., Ade, P., et al. 2010, ApJS, 191, 423CrossRefGoogle Scholar
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18Google Scholar
Mason, B. S., Myers, S. T., & Readhead, A. C. S. 2001, ApJ, 555, L11Google Scholar
Muchovej, S., Mroczkowski, T., Carlstrom, J. E., et al. 2007, ApJ, 663, 708CrossRefGoogle Scholar
Plagge, T., Benson, B. A., Ade, P. A. R., et al. 2010, ApJ, 716, 1118Google Scholar
Staniszewski, Z., Ade, P. A. R., Aird, K. A., et al. 2009, ApJ, 701, 32CrossRefGoogle Scholar
Sunyaev, R. A. & Zel'dovich, Y. B. 1970, Comm. Astrophys. Space Phys., 2, 66Google Scholar
Sunyaev, R. A. & Zel'dovich, Y. B. 1972, Comm. Astrophys. Space Phys., 4, 173Google Scholar