Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-01T15:57:22.439Z Has data issue: false hasContentIssue false

Mass-Radius Relationships of Rocky Exoplanets

Published online by Cambridge University Press:  29 April 2014

Frank Sohl
Affiliation:
Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Frank W. Wagner
Affiliation:
Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
Heike Rauer
Affiliation:
Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Center of Astronomy and Astrophysics, Technical University Berlin (TUB), Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mass and radius of planets transiting their host stars are provided by radial velocity and photometric observations. Structural models of solid exoplanet interiors are then constructed by using equations of state for the radial density distribution, which are compliant with the thermodynamics of the high-pressure limit. However, to some extent those structural models suffer from inherent degeneracy or non-uniqueness problems owing to a principal lack of knowledge of the internal differentiation state and/or the possible presence of an optically thick atmosphere. We here discuss the role of corresponding measurement errors, which adversely affect determinations of a planet's mean density and bulk chemical composition. Precise measurements of planet radii will become increasingly important as key observational constraints for radial density models of individual solid low-mass exoplanets or super-Earths.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Batalha, N. M., Borucki, W. J., Bryson, S. T., Buchhave, L. A., Caldwell, D. A., Christensen-Dalsgaard, J., Ciardi, D., Dunham, E. W., Fressin, F., et al. 2011, ApJ, 729, 27.Google Scholar
Bruntt, H., Deleuil, M., Fridlund, M., Alonso, R., Bouchy, F., Hatzes, A., Mayor, M., Moutou, C., & Queloz, D. 2010, A&A 519 A51.Google Scholar
Fortney, J. J., Glenzer, S. H., Koenig, M., Militzer, B., Saumon, D., & Valencia, D. 2009, Physics of Plasmas, 16, 041003.Google Scholar
Haghighipour, N. 2011, Contemporary Physics, 52, 403.CrossRefGoogle Scholar
Madhusudhan, N., Lee, K. K. M., & Mousis, O. 2012, ApJ 759 L40.CrossRefGoogle Scholar
Marcy, G. W. & Howard, A. W., the Kepler team 2011, in: Sozzetti, A., Lattanzi, M. G. & Boss, A. P. (eds.), Proc. IAU Symp., 276, 3.Google Scholar
Rauer, H. & Catala, C., the PLATO consortium 2011, in: Sozzetti, A., Lattanzi, M. G. & Boss, A. P. (eds.), Proc. IAU Symp., 276, 354.Google Scholar
Rogers, L. A. & Seager, S. 2011, in: Sozzetti, A., Lattanzi, M. G. & Boss, A. P. (eds.), Proc. IAU Symp., 276, 189.Google Scholar
Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279.Google Scholar
Sohl, F. 2010, in: Fernández, J. A., Lazzaro, D., Prialnik, D. & Schulz, R. (eds.), Proc. IAU Symp., 263, 113.Google Scholar
Sohl, F. & Schubert, G. 2007, in: Spohn, T. (ed.), Treatise on Geophysics, 10, 27.CrossRefGoogle Scholar
Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337.CrossRefGoogle Scholar
Swift, D. C., Eggert, J. H., Hicks, D. G., Hamel, S., Caspersen, K., Schwegler, E., Collins, G. W., Nettelmann, N., & Ackland, G. J. 2012, ApJ, 744, 59.CrossRefGoogle Scholar
Valencia, D., O'Connell, R. J., & Sasselov, D. 2006, Icarus, 181, 545.CrossRefGoogle Scholar
Valencia, D. 2011, in: Sozzetti, A., Lattanzi, M. G. & Boss, A. P. (eds.), Proc. IAU Symp., 276, 181.Google Scholar
Wagner, F. W., Sohl, F., Hussmann, H., Grott, M., & Rauer, H. 2011a, Icarus, 214, 366.Google Scholar
Wagner, F. W., Sohl, F., Rückriemen, T., & Rauer, H. 2011b, in: Sozzetti, A., Lattanzi, M. G. & Boss, A. P. (eds.), Proc. IAU Symp., 276, 193.Google Scholar
Wagner, F. W., Tosi, N., Sohl, F., Rauer, H., & Spohn, T. 2012, A&A 541 A103.Google Scholar