Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T08:26:52.068Z Has data issue: false hasContentIssue false

Massive stars at (very) high energies: γ-ray binaries

Published online by Cambridge University Press:  12 July 2011

Guillaume Dubus
Affiliation:
Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université J. Fourier & CNRS, France email: [email protected]
Benoît Cerutti
Affiliation:
Laboratoire d'Astrophysique de Grenoble, UMR 5571 Université J. Fourier & CNRS, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

γ-ray binaries are systems that emit most of their radiative power above 1 MeV. They are associated with O or Be stars in orbit with a compact object, possibly a young pulsar. Much like colliding wind binaries, the pulsar generates a relativistic wind that interacts with the stellar wind. The result is non-thermal emission from radio to very high energy γ-rays. The wind, radiation and magnetic field of the massive star play a major role in the dynamics and radiative output of the system. They are particularly important to understand the high energy physics at work. Inversely, γ-ray binaries offer novel probes of stellar winds and insights into the fate of O/B binaries.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abdo, A. A., Ackermann, M., Ajello, M., Atwood, W. B. et al. 2010a, Science, 329, 817Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., Atwood, W. B. et al. 2010b, A&A, 512, A7Google Scholar
The Fermi LAT Collaboration, Abdo, A. A., Ackermann, M., Ajello, M. et al. 2009, Science, 326, 1512Google Scholar
Bogovalov, S. V., Khangulyan, D. V., Koldoba, A. V., Ustyugova, G. V. et al. 2008, MNRAS, 387, 63CrossRefGoogle Scholar
Bosch-Ramon, V. & Khangulyan, D. 2009, International Journal of Modern Physics D, 18, 347CrossRefGoogle Scholar
Cerutti, B., Dubus, G., & Henri, G. 2009, A&A, 507, 1217Google Scholar
Cerutti, B., Malzac, J., Dubus, G., & Henri, G. 2010, A&A, 519A, 81Google Scholar
Dhawan, V., Mioduszewski, A., & Rupen, M. 2006, in: VI Microquasar Workshop: Microquasars and Beyond, p. 52Google Scholar
Dubus, G. 2006, A&A, 456, 801Google Scholar
Dubus, G., Cerutti, B., & Henri, G. 2008, A&A, 477, 691Google Scholar
Holder, J. 2009, ArXiv e-prints 0912.4781Google Scholar
Melatos, A., Johnston, S., & Melrose, D. B. 1995, MNRAS, 275, 381CrossRefGoogle Scholar
Ribó, M., Paredes, J. M., Moldón, J., Martí, J. et al. 2008, A&A, 481, 17Google Scholar
Skilton, J. L., Pandey-Pommier, M., Hinton, J. A., Cheung, C. C. et al. 2009, MNRAS, 399, 317CrossRefGoogle Scholar
Zamanov, R. K., Martí, J., Paredes, J. M., Fabregat, J. et al. 1999, A&A, 351, 543Google Scholar
Zdziarski, A. A., Neronov, A., & Chernyakova, M. 2010, MNRAS, 403, 1873CrossRefGoogle Scholar