Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-12T21:47:57.588Z Has data issue: false hasContentIssue false

Massive star mass-loss revealed by X-ray observations of young supernovae

Published online by Cambridge University Press:  30 December 2019

Vikram V. Dwarkadas*
Affiliation:
Dept. of Astronomy and Astrophysics, Univ of Chicago5640 S Ellis Ave, Chicago, IL 60637 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars lose a considerable amount of mass during their lifetime. When the star explodes as a supernova (SN), the resulting shock wave expands in the medium created by the stellar mass-loss. Thermal X-ray emission from the SN depends on the square of the density of the ambient medium, which in turn depends on the mass-loss rate (and velocity) of the progenitor wind. The emission can therefore be used to probe the stellar mass-loss in the decades or centuries before the star’s death.

We have aggregated together data available in the literature, or analysed by us, to compute the X-ray lightcurves of almost all young supernovae detectable in X-rays. We use this database to explore the mass-loss rates of massive stars that collapse to form supernovae. Mass-loss rates are lowest for the common Type IIP supernovae, but increase by several orders of magnitude for the highest luminosity X-ray SNe.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bochenek, C. D., Dwarkadas, V. V., Silverman, J. M., Fox, O. D., Chevalier, R. A.; Smith, N, & Filippenko, A.V. 2018, MNRAS, 473, 336 10.1093/mnras/stx2029CrossRefGoogle Scholar
Chakraborti, S., Ray, A., Smith, R., Ryder, S., Yadav, N., Sutaria, F., Dwarkadas, V. V., Chandra, P., Pooley, D., & Roy, R. 2013, ApJ, 774, 30 10.1088/0004-637X/774/1/30CrossRefGoogle Scholar
Chakraborti, S., Ray, A., Smith, R., Margutti, R., Pooley, D., Bose, S., Sutaria, F., Chandra, P., Dwarkadas, V.V., Ryder, S., & Maeda, K. 2016, ApJ, 817, 22 10.3847/0004-637X/817/1/22CrossRefGoogle Scholar
Chandra, P., Dwarkadas, V. V., Ray, A., Immler, S., & Pooley, D. 2009, ApJ, 699, 388 10.1088/0004-637X/699/1/388CrossRefGoogle Scholar
Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C., Irwin, C. M., Soderberg, A. M., Chakraborti, S., & Immler, S. 2012, ApJ, 755, 110 10.1088/0004-637X/755/2/110CrossRefGoogle Scholar
Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C., Soderberg, A. M., Chakraborti, S., & Immler, S. 2012, ApJ, 810, 32 10.1088/0004-637X/810/1/32CrossRefGoogle Scholar
Crowther, P. A. 2007, ARAA, 45, 177 10.1146/annurev.astro.45.051806.110615CrossRefGoogle Scholar
Chevalier, R. A., & Fransson, C. 2003, in: Weiler, K. (ed), Supernovae and Gamma-Ray Bursters, Lecture Notes in Physics, (Berlin: Springer Verlag), 598, 17 Google Scholar
Chevalier, R. A., & Fransson, C. 2006, ApJ, 651, 381 10.1086/507606CrossRefGoogle Scholar
Chevalier, R. A., Fransson, C., & Nymark, T. 2006, ApJ, 641, 1029 10.1086/500528CrossRefGoogle Scholar
Chevalier, R. A., & Soderberg, A. M. 2010, ApJ, 711, L40 10.1088/2041-8205/711/1/L40CrossRefGoogle Scholar
Dwarkadas, V. V, & Gruszko, J. 2012, MNRAS, 419, 1515 10.1111/j.1365-2966.2011.19808.xCrossRefGoogle Scholar
Dwarkadas, V. V., Bauer, F. E., Bietenholz, M., & Bartel, N. 2014, in J-U. Ness (ed), The X-ray Universe 2014, 248Google Scholar
Dwarkadas, V. V, 2014, MNRAS, 440, 1917 10.1093/mnras/stu347CrossRefGoogle Scholar
Dwarkadas, V. V., Romero-Caizales, C., Reddy, R., & Bauer, F. E. 2016, MNRAS, 462, 1101 10.1093/mnras/stw1717CrossRefGoogle Scholar
Fransson, C., Lundqvist, P., & Chvelier, R. A. 1996, ApJ, 461, 993 10.1086/177119CrossRefGoogle Scholar
Immler, S., Fesen, R. A., Van Dyk, S. D., Weiler, K. W., Petre, R. Lewin, W. H. G., Pooley, D., Pietsch, W., Aschenbach, B., Hammell, M. C., & Rudie, G. C. 2005, ApJ, 632, 2381 10.1086/432869CrossRefGoogle Scholar
Patnaude, D. J., Loeb, A., & Jones, C. 2011, NewA, 16, 187 10.1016/j.newast.2010.09.004CrossRefGoogle Scholar
Silverman, J. M., Nugent, P. E., Gal-Yam, A., Sullivan, M., Howell, D. A., Filippenko, A. V., et al. 2013, ApJS, 207, 3 10.1088/0067-0049/207/1/3CrossRefGoogle Scholar
Smartt, S. J. 2009, ARAA, 47, 63 10.1146/annurev-astro-082708-101737CrossRefGoogle Scholar
Smartt, S. J. 2015, PASA, 32, 16 10.1017/pasa.2015.17CrossRefGoogle Scholar
Smith, N. 2014, ARAA, 52, 487 10.1146/annurev-astro-081913-040025CrossRefGoogle Scholar
Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H.-T. 2016, ApJ, 821, 38 10.3847/0004-637X/821/1/38CrossRefGoogle Scholar
Tatischeff, V. 2009, A&A, 499, 191 Google Scholar