Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:18:18.069Z Has data issue: false hasContentIssue false

Massive Elliptical Galaxies: BH Scouring or a Bottom-Heavy IMF?

Published online by Cambridge University Press:  10 April 2015

Jens Thomas
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München
Roberto Saglia
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München
Ralf Bender
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München
Peter Erwin
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München
Maximilian Fabricius
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching Universitäts-Sternwarte München, Scheinerstr. 1, 81679 München
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present indirect constraints on the stellar initial-mass-function (IMF) in nine massive elliptical galaxies with σ ≈ 300 km/s, via a comparison of dynamical and stellar-population based stellar masses. We use adaptive-optics assisted, high resolution kinematical data from the SINFONI Search for Supermassive Black Holes that allow us to constrain the dynamical stellar mass-to-light ratio in the very centre of each galaxy. Hence we measure the IMF in a galaxy region where the stellar mass dominates over dark matter, minimising any potential degeneracy between the two mass components. In six of our galaxies – those which have depleted stellar cores – we find an IMF consistent with the one measured in the Milky-Way via direct star counts. The three remaining, power-law galaxies have instead stellar masses about a factor of two times larger than expected from a Milky-Way type IMF, indicating either a more bottom-heavy IMF (like, e.g., the Salpeter IMF) or a dark-matter distribution that is degenerate with the stellar mass down to the very centres of these galaxies. The bottom-light IMF in our core galaxies is surprising in view of previous studies that suggested a systematic IMF variation where early-type galaxies with σ ≈ 300 km/s have a Salpeter or even more dwarf-dominated IMF. Core galaxies are particularly important since their unique central orbital structure offers an independent crosscheck for the dynamical models. Our models with a bottom-light IMF are consistent with the distribution of orbits predicted by SMBH-binary core-formation models. This indicates that spatially well resolved central kinematical data are important for determining unbiased dynamical stellar mass-to-light ratios. Our results imply either that the IMF in massive galaxies varies over a wider range than previously anticipated, and is not the same in core and power-law ellipticals, or else that there are systematic variations in the distribution of dark matter among massive early-type galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Cappellari, M., et al., 2013, MNRAS, 432, 1862Google Scholar
Conroy, C. & van Dokkum, P. G., 2012, ApJ, 760, 71CrossRefGoogle Scholar
Maraston, C., 2005, MNRAS, 362, 799Google Scholar
Rusli, S. P., Erwin, P., Saglia, R. P., Thomas, J., Fabricius, M., Bender, R., & Nowak, N., 2013a, AJ, 146, 160Google Scholar
Rusli, S. P., et al., 2013b, AJ, 146, 45Google Scholar
Smith, R. J. & Lucey, J. R., 2013, MNRAS, 434, 1964Google Scholar
Thomas, J., et al., 2011, MNRAS, 415, 545Google Scholar
Thomas, J., Saglia, R. P., Bender, R., Erwin, P., & Fabricius, M., 2014, ApJ, 782, 39CrossRefGoogle Scholar
Treu, T., Auger, M. W., Koopmans, L. V. E., Gavazzi, R., Marshall, P. J., & Bolton, A. S., 2010, ApJ, 709, 1195CrossRefGoogle Scholar