Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:43:26.776Z Has data issue: false hasContentIssue false

Massive Black Holes in Merging Galaxies

Published online by Cambridge University Press:  27 October 2016

Marta Volonteri
Affiliation:
Institut d'Astrophysique de Paris, Sorbonne Universitès, UPMC Univ Paris 6 et CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France email: [email protected]
Tamara Bogdanović
Affiliation:
Center for Relativistic Astrophysics, School of Physics, Georgia Tech 837 State Street, Atlanta, GA 30332-0430, USA email: [email protected]
Massimo Dotti
Affiliation:
Department of Physics & INFN, University of Milano Bicocca, Piazza della Scienza 3, I20126 Milano, Italy email: [email protected], [email protected]
Monica Colpi
Affiliation:
Department of Physics & INFN, University of Milano Bicocca, Piazza della Scienza 3, I20126 Milano, Italy email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of “dichotomy” between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Amaro-Seoane, P., Aoudia, S., Babak, S., et al. 2012, Classical Quant. Grav., 29, 124016 CrossRefGoogle Scholar
Amaro-Seoane, P., Brem, P., & Cuadra, J. 2013, ApJ, 764, 14 Google Scholar
Armitage, P. J. & Natarajan, P. 2005, ApJ, 634, 921 CrossRefGoogle Scholar
Barausse, E. 2012, MNRAS, 423, 2533 CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307 Google Scholar
Bellovary, J. M., et al. 2010, ApJ, 721, L148 CrossRefGoogle Scholar
Berczik, P., Merritt, D., Spurzem, R., & Bischof, H.-P. 2006, ApJ, 642, L21 CrossRefGoogle Scholar
Blecha, L., Loeb, A., & Narayan, R. 2013, MNRAS, 429, 2594 CrossRefGoogle Scholar
Bogdanović, T. 2015, Astrophysics Space, 40, 103 CrossRefGoogle Scholar
Boylan-Kolchin, M., Ma, C.-P., & Quataert, E. 2008, MNRAS, 383, 93 CrossRefGoogle Scholar
Callegari, S., et al. 2011, ApJ, 729, 85 CrossRefGoogle Scholar
Callegari, S., et al. 2009, ApJ, 696, L89 CrossRefGoogle Scholar
Capelo, P. R., et al. 2015, MNRAS, 447, 2123 CrossRefGoogle Scholar
Colpi, M. 2014, Space Sci. Rev., 183, 189 CrossRefGoogle Scholar
Colpi, M. & Dotti, M. 2011, Advanced Sci. Lett., 4, 181 CrossRefGoogle Scholar
Comerford, J. M., Pooley, D., Barrows, R. S., Greene, J. E., Zakamska, N. L., Madejski, G. M., & Cooper, M. C. 2015, ApJ, 806, 219 Google Scholar
del Valle, L. & Escala, A. 2014, ApJ, 780, 84 Google Scholar
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604 CrossRefGoogle Scholar
D'Orazio, D. J., Haiman, Z., & MacFadyen, A. 2013, MNRAS, 436, 2997 CrossRefGoogle Scholar
Dotti, M., Colpi, M., Haardt, F., & Mayer, L. 2007, MNRAS, 379, 956 Google Scholar
Dotti, M., Merloni, A., & Montuori, C. 2015, MNRAS, 448, 3603 CrossRefGoogle Scholar
Dotti, M., et al. 2009, MNRAS, 396, 1640 CrossRefGoogle Scholar
Dubois, Y., Devriendt, J., Slyz, A., & Teyssier, R. 2012, MNRAS, 420, 2662 Google Scholar
Dubois, Y., Volonteri, M., & Silk, J. 2014, MNRAS, 440, 1590 CrossRefGoogle Scholar
Elvis, M., Risaliti, G., & Zamorani, G. 2002, ApJ, 565, L75 CrossRefGoogle Scholar
Escala, A., Larson, R. B., Coppi, P. S., & Mardones, D. 2005, ApJ, 630, 152 Google Scholar
Fabian, A. C. & Iwasawa, K. 1999, MNRAS, 303, L34 CrossRefGoogle Scholar
Farris, B. D., Duffell, P., MacFadyen, A. I., & Haiman, Z. 2015, MNRAS, 447, L80 Google Scholar
Fiacconi, D., Mayer, L., Roškar, R., & Colpi, M. 2013, ApJ, 777, L14 Google Scholar
Gualandris, A. & Merritt, D. 2008, ApJ, 678, 780 Google Scholar
Haiman, Z., Kocsis, B., & Menou, K. 2009, ApJ, 700, 1952 Google Scholar
Holley-Bockelmann, K. & Khan, F. M. 2015, ApJ, 810, 139 Google Scholar
Hopkins, P. F., Richards, G. T., & Hernquist, L. 2007, ApJ, 654, 731 CrossRefGoogle Scholar
Khan, F. M., Preto, M., Berczik, P., Berentzen, I., Just, A., & Spurzem, R., 2012, ApJ, 749, 147 Google Scholar
Lousto, C. O., Campanelli, M., Zlochower, Y., & Nakano, H. 2010, Classical Quant. Grav., 27, 114006 Google Scholar
Lupi, A., Haardt, F., Dotti, M., & Colpi, M. 2015, MNRAS, 453, 3437 CrossRefGoogle Scholar
MacFadyen, A. I. & Milosavljević, M. 2008, ApJ, 672, 83 CrossRefGoogle Scholar
Mayer, L., Kazantzidis, S., Madau, P., Colpi, M., Quinn, T., & Wadsley, J., 2007, Science, 316, 1874 CrossRefGoogle Scholar
McWilliams, S. T., Ostriker, J. P., & Pretorius, F. 2014, ApJ, 789, 156 Google Scholar
Merloni, A. 2015, “Observing Supermassive Black Holes Across Cosmic Time: From Phenomenology to Physics,” in Astrophysical Black Holes, Lecture Notes in Physics, Vol. 905, eds. Haardt, F., Gorini, V., Moschella, U., Treves, A., & Colpi, M. (Springer: New York); arXiv:1505.04940Google Scholar
Noble, S. C., et al. 2012, ApJ, 755, 51 Google Scholar
Peters, P. C. 1964, Phys. Rev., 136, 1224 Google Scholar
Roedig, C., Sesana, A., Dotti, M., Cuadra, J., Amaro-Seoane, P., & Haardt, F., 2012, A&A, 545, A127 Google Scholar
Roškar, R., et al. 2015, MNRAS, 449, 494 Google Scholar
Sesana, A., Gair, J., Berti, E., & Volonteri, M., 2011, Phys. Rev. D, 83, 044036 CrossRefGoogle Scholar
Sesana, A. & Khan, F. M. 2015, MNRAS, 454, L66 Google Scholar
Shi, J.-M., Krolik, J. H., Lubow, S. H., & Hawley, J. F. 2012, ApJ, 749, 118 Google Scholar
Soltan, A. 1982, MNRAS, 200, 115 Google Scholar
Tremmel, M., Governato, F., Volonteri, M., & Quinn, T. R. 2015, MNRAS, 451, 1868 Google Scholar
Van Wassenhove, S., et al. 2014, MNRAS, 439, 474 Google Scholar
Van Wassenhove, S., et al. 2012, ApJ, 748, L7 Google Scholar
Vasiliev, E., Antonini, F., & Merritt, D. 2014, ApJ, 785, 163 CrossRefGoogle Scholar
Vasiliev, E., Antonini, F., & Merritt, D. 2015, ApJ, 810, 49 Google Scholar
Volonteri, M., Haardt, F., & Madau, P. 2003, ApJ, 582, 559 Google Scholar
Volonteri, M., Miller, J. M., & Dotti, M. 2009, ApJ, 703, L86 Google Scholar
Yu, Q. 2002, MNRAS, 331, 935 Google Scholar
Yu, Q. & Tremaine, S. 2002, MNRAS, 335, 965 CrossRefGoogle Scholar