Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T20:36:07.027Z Has data issue: false hasContentIssue false

Massive binaries and the enrichment of the interstellar medium in globular clusters

Published online by Cambridge University Press:  18 January 2010

S. E. de Mink
Affiliation:
Astronomical Institute Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands email: [email protected]
O. R. Pols
Affiliation:
Astronomical Institute Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands email: [email protected]
N. Langer
Affiliation:
Astronomical Institute Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands email: [email protected] Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
R. G. Izzard
Affiliation:
Université Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch (AGB) stars and massive stars rotating near the break-up limit (spin stars). We discuss the idea that massive binaries may provide an interesting alternative source of processed material. We discuss observational evidence for mass shedding from interacting binaries. In contrast to the fast, radiatively driven winds of massive stars, this material is typically ejected with low velocity. We expect that it remains inside the potential well of a globular cluster and becomes available for the formation or pollution of a second generation of stars. We estimate that the amount of processed low-velocity material that can be ejected by massive binaries is larger than the contribution of the two previously suggested sources combined.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Barai, P., et al. 2004, ApJ, 608, 989CrossRefGoogle Scholar
Bastian, N. & de Mink, S. E. 2009, MNRAS (Letters), 398, L11CrossRefGoogle Scholar
Bisikalo, D. V., Harmanec, P., Boyarchuk, A. A., Kuznetsov, O. A., & Hadrava, P. 2000, A&A, 353, 1009Google Scholar
Bonnell, I. A. & Bate, M. R. 2005, MNRAS, 362, 915CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117Google Scholar
Ciotti, L., D'Ercole, A., Pellegrini, S., & Renzini, A. 1991, ApJ, 376, 380CrossRefGoogle Scholar
D'Antona, F., Caloi, V., Montalbán, J., Ventura, P., & Gratton, R. 2002, A&A, 395, 69Google Scholar
Davis, D. S., Richer, H. B., Anderson, J., Brewer, J., Hurley, J., Kalirai, J. S., Rich, R. M., & Stetson, P. B. 2008, AJ, 135, 2155CrossRefGoogle Scholar
de Greve, J. P., & Linnell, A. P. 1994, A&A, 291, 786Google Scholar
de Mink, S. E., Pols, O. R., & Hilditch, R. W. 2007, A&A, 467, 1181Google Scholar
de Mink, S. E., Pols, O. R., Langer, N., & Izzard, R. 2009a, A&A, in pressGoogle Scholar
de Mink, S. E., Cantiello, M., Langer, N., Pols, O. R., Brott, I., & Yoon, S.-C. 2009b, A&A, 497, 243Google Scholar
Decressin, T., Baumgardt, H., & Kroupa, P. 2008, A&A, 492, 101Google Scholar
Decressin, T., Charbonnel, C., & Meynet, G. 2007a, A&A, 475, 859Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007b, A&A, 464, 1029Google Scholar
Denissenkov, P. A. & Herwig, F. 2003, ApJ (Letters), 590, L99CrossRefGoogle Scholar
D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298CrossRefGoogle Scholar
Figueiredo, J., de Greve, J. P., & Hilditch, R. W. 1994, A&A, 283, 144Google Scholar
Flannery, B. P. & Ulrich, R. K. 1977, ApJ, 212, 533CrossRefGoogle Scholar
Gehrz, R. D., Smith, N., Jones, B., Puetter, R., & Yahil, A. 2001, ApJ, 559, 395CrossRefGoogle Scholar
Glebbeek, E., Gaburov, E., de Mink, S. E., Pols, O. R., & Portegies Zwart, S. F. 2009, A&A, 497, 255Google Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARAA&A, 42, 385Google Scholar
Grundstrom, E. D., Gies, D. R., Hillwig, T. C., McSwain, M. V., Smith, N., Gehrz, R. D., Stahl, O., & Kaufer, A. 2007, ApJ, 667, 505CrossRefGoogle Scholar
Iben, I. J. & Livio, M. 1993, PASP, 105, 1373CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231CrossRefGoogle Scholar
Kroupa, P. 2002, Science, 295, 82CrossRefGoogle Scholar
Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J., & Helsel, J. W. 2009, AJ, 137, 3358CrossRefGoogle Scholar
Nazarenko, V. V. & Glazunova, L. V. 2006, Ast. Rep., 50, 380CrossRefGoogle Scholar
Packet, W. 1981, A&A, 102, 17Google Scholar
Pasquini, L., Bonifacio, P., Molaro, P., Francois, P., Spite, F., Gratton, R. G., Carretta, E., & Wolff, B. 2005, A&A, 441, 549Google Scholar
Petrovic, J., Langer, N., & van der Hucht, K. A. 2005, A&A, 435, 1013Google Scholar
Piotto, G., Bedin, L. R., Anderson, J., King, I. R., Cassisi, S., Milone, A. P., Villanova, S., Pietrinferni, A., & Renzini, A. 2007, ApJ (Letters), 661, L53CrossRefGoogle Scholar
Pols, O. R., Cote, J., Waters, L. B. F. M., & Heise, J. 1991, A&A, 241, 419Google Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135Google Scholar
Prantzos, N., Charbonnel, C., & Iliadis, C. 2007, A&A, 470, 179Google Scholar
Refsdal, S., Roth, M. L., & Weigert, A. 1974, A&A, 36, 113Google Scholar
Renzini, A. 2008, MNRAS, 391, 354CrossRefGoogle Scholar
Sana, H., Gosset, E., Nazé, Y., Rauw, G., & Linder, N. 2008, MNRAS, 386, 447CrossRefGoogle Scholar
Smith, N., Gehrz, R. D., & Goss, W. M. 2001, AJ, 122, 2700CrossRefGoogle Scholar
Smith, N., Gehrz, R. D., Stahl, O., Balick, B., & Kaufer, A. 2002, ApJ, 578, 464Google Scholar
Ulrich, R. K. & Burger, H. L. 1976, ApJ, 206, 509CrossRefGoogle Scholar
van Rensbergen, W., de Loore, C., & Jansen, K. 2006, A&A, 446, 1071Google Scholar
Ventura, P., D'Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ (Letters), 550, L65CrossRefGoogle Scholar