Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T19:24:06.593Z Has data issue: false hasContentIssue false

Masses of white dwarfs in symbiotic binaries

Published online by Cambridge University Press:  09 October 2020

Kenneth H. Hinkle
Affiliation:
NSF’s National Optical-Infrared Astronomy Research Laboratory, P.O. Box 26732, Tucson, AZ 85726, USA emails: [email protected], [email protected]
Francis C. Fekel
Affiliation:
Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd, Box 9501, Nashville, TN 37209, USA email: [email protected]
Richard Joyce
Affiliation:
NSF’s National Optical-Infrared Astronomy Research Laboratory, P.O. Box 26732, Tucson, AZ 85726, USA emails: [email protected], [email protected]
Thomas Lebzelter
Affiliation:
University of Vienna, Department of Astrophysics, Tuerkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected]
Oscar Straniero
Affiliation:
Istituto Nazionale di Astrofisica, Osservatorio d’Abruzzo, Via Maggini s.n.c., I-64100, Teramo, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Masses have been computed for the white dwarfs (WDs) in eclipsing, mass exchange (symbiotic), WD–red giant (RG) binaries by using single-lined spectroscopic orbits, orbital inclinations, and the RG masses. Inclinations have been measured for 13 eclipsing symbiotic binaries. Using Gaia data the mass of the RG can be found from evolutionary tracks. Since the WD evolved from the more massive star in the binary, the WD should be more massive than predicted from the mass of the current RG. Typically the WD has a lower mass than expected implying a previous mass exchange stage for these systems.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Cummings, J. D., Kalirai, J., Tremblay, P.-E., et al. 2018, ApJ, 866, 21CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2017, AJ, 153, 35CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2015, AJ, 150, 48CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2010, AJ, 139, 1315CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2008, AJ, 136, 146CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2007, AJ, 133, 17CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2001, AJ, 121, 2219CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2000, AJ, 120, 3255CrossRefGoogle Scholar
Fekel, F. C., Hinkle, K. H., Joyce, R. R., et al. 2000, AJ, 119, 1375CrossRefGoogle Scholar
Gałan, C., Mikołajewska, J., Hinkle, K. H., et al. 2017, MNRAS, 466, 2194CrossRefGoogle Scholar
Gałan, C., Mikołajewska, J., Hinkle, K. H., et al. 2016, MNRAS, 455, 1282CrossRefGoogle Scholar
Harries, T. J. & Howarth, I.D. 2000, A&A, 361, 139Google Scholar
Jorissen, A., Boffin, H. M. J., Karinkuzhi, D., et al. 2019, A&A, 626, 127Google Scholar
Mermilliod, J.-C., Andersen, J., Latham, D. W., et al. 2007, A&A, 473, 829Google Scholar
Mikoiłajeska, J. 2003, ASP Conf. Series, 303, 9Google Scholar
Prada-Moroni, P. & Straniero, O. 2009, A&A, 507, 1575Google Scholar
van der Swaelmen, M., Boffin, H. M. J., Jorrissen, A., et al. 2017, A&A, 597, 68Google Scholar