Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T21:42:38.114Z Has data issue: false hasContentIssue false

Mass outflow of the X-ray emission line gas in NGC 4151

Published online by Cambridge University Press:  29 March 2021

S. B. Kraemer
Affiliation:
Department of Physics, Institute for Astrophysics and Computational Sciences, The Catholic University of America, Washington, DC 20064, USA email: [email protected]
T. J. Turner
Affiliation:
Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 U.S.A
D. M. Crenshaw
Affiliation:
Department of Physics and Astronomy, Georgia State University, 25 Park Place, Room 631, Atlanta, GA 30303, USA
H. R. Schmitt
Affiliation:
Naval Research Laboratory, Washington, DC 20375, USA
M. Revalski
Affiliation:
Space Telescope Science Institute, Baltimore, MD 21218, USA
T. C. Fischer
Affiliation:
Space Telescope Science Institute, Baltimore, MD 21218, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have analyzed Chandra/High Energy Transmission Grating spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth-order spectral images show extended H- and He-like O and Ne, up to a distance r ˜ 200 pc from the nucleus. Using the 1st-order spectra, we measure an average line velocity ˜230 km s–1, suggesting significant outflow of X-ray gas. We generated Cloudy photoionization models to fit the 1st-order spectra; the fit required three distinct emission-line components. To estimate the total mass of ionized gas (M) and the mass outflow rates, we applied the model parameters to fit the zeroth-order emission-line profiles of Ne IX and Ne X. We determined an M ≍ 5.4 × 105 Mʘ. Assuming the same kinematic profile as that for the [O III] gas, derived from our analysis of Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra, the peak X-ray mass outflow rate is approximately 1.8 Mʘ yr–1, at r ˜ 150 pc. The total mass and mass outflow rates are similar to those determined using [O III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray emitting mass outflow rate does not drop off at r > 100pc, which suggests that it may have a greater impact on the host galaxy.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Begelman, M. C. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1, Coevolution of Black Holes and Galaxies, from the Carnegie Observatories Centennial Symposia, ed. Ho, L., 374–390Google Scholar
Bianchi, S., Guainazzi, M., & Chiaberge, M. 2006, A&A, 448, 499 Google Scholar
Couto, J., Kraemer, S., Turner, T., et al. 2016, ApJ, 833, 191 CrossRefGoogle Scholar
Crenshaw, D. M., Fischer, T. C., Kraemer, S. B., et al. 2015, ApJ, 799, 83 CrossRefGoogle Scholar
Ferland, G. J., Chatzikos, M., Guzman, F., et al. 2017, Rev.Mexicana AyA, 53, 385 Google Scholar
Fischer, T. C., Crenshaw, D. M., Kraemer, S. B., et al. 2013, ApJS, 209, 1 CrossRefGoogle Scholar
Fischer, T. C., Machuca, C., Diniz, M. R., et al. 2017, ApJ, 834, 30 CrossRefGoogle Scholar
Fischer, T. C., Kraemer, S. B., Schmitt, H. R., et al. 2018, ApJ, 856, 102 CrossRefGoogle Scholar
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJ, 539, L13 CrossRefGoogle Scholar
Gonzalez-Martin, O., Acosta-Pulido, J. A., Perez Garcia, A. M., et al. 2010, ApJ, 723, 1748 CrossRefGoogle Scholar
Kallman, T. R., Evans, D. A., Marshall, H., et al. 2014, ApJ, 780, 121 CrossRefGoogle Scholar
Kraemer, S. B. & Crenshaw, D. M. 2000, ApJ, 532, 256 CrossRefGoogle Scholar
Kraemer, S. B., Crenshaw, D. M., Hutchings, J. B., et al. 2000, ApJ, 531, 278 CrossRefGoogle Scholar
Kraemer, S. B., Trippe, M. L., Crenshaw, D. M., et al. 2009, ApJ, 698, 106 CrossRefGoogle Scholar
Kraemer, S. B., Turner, T. J., Couto, J. D., et al. 2020, MNRAS, 493, 3893 CrossRefGoogle Scholar
Maksym, W. P., Fabbiano, G., Elvis, M., et al. 2019, ApJ, 872, 94 CrossRefGoogle Scholar
Ogle, P. M., Marshall, H. L., Lee, J. C., et al. 2000, ApJ, 545, L81 CrossRefGoogle Scholar
Porter, R. L., Ferland, G. J., Kraemer, S. B., et al. 2006, PASP, 118, 920 CrossRefGoogle Scholar
Revalski, M., Crenshaw, D. M., Kraemer, S. B., et al. 2018a, ApJ, 856, 46 CrossRefGoogle Scholar
Revalski, M., Dashtamirova, D., Crenshaw, D. M., et al. 2018b, ApJ, 867, 88 CrossRefGoogle Scholar
Riffel, R. A., Storchi-Bergmann, T., & Winge, C. 2013, MNRAS, 430, 2249 CrossRefGoogle Scholar
Storchi-Bergmann, T., Lopes, R. D. S., McGregor, P. J., et al. 2010, MNRAS, 402, 819 CrossRefGoogle Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, A&A, 521, A57 Google Scholar
Tombesi, F., Melédez, M., Veilleux, S., et al. 2015, Nature, 519, 436 CrossRefGoogle Scholar
Wang, J., Fabbiano, G., Elvis, M., et al. 2011a, ApJ, 736, 62 CrossRefGoogle Scholar
Wang, J., Fabbiano, G., Risaliti, G., et al. 2011b, ApJ, 729, 75 CrossRefGoogle Scholar
Wang, J., Fabbiano, G., Elvis, M., et al. 2011c, ApJ, 742, 23 CrossRefGoogle Scholar
Young, A. J., Wilson, A. S., & Shopbell, P. L. 2001, ApJ, 556, 6 CrossRefGoogle Scholar