Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T01:16:31.214Z Has data issue: false hasContentIssue false

Mass loss from binary stars approaching merger

Published online by Cambridge University Press:  30 November 2022

Ondřej Pejcha*
Affiliation:
Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Praha 8, Czech Republic email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some binary stars experience common envelope evolution, which is accompanied by drastic loss of angular momentum, mass, and orbital energy and which leaves behind close binaries often involving at least one white dwarf, neutron star, or black hole. The best studied phase of common envelope is the dynamical inspiral lasting few original orbital periods. We show theoretical interpretation of observations of V1309 Sco and AT2018bwo revealing that binaries undergo substantial prolonged mass loss before the dynamical event amounting up to few solar masses. This mass loss is concentrated in the orbital plane in the form of an outflow or a circumbinary disk. Collision between this slower mass loss and the subsequent faster dynamical ejection powers a bright red transient. The resulting radiative shock helps to shape the explosion remnant and provides a site of dust and molecule formation.

Type
Contributed Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Blagorodnova, N., Karambelkar, V., Adams, S. M., et al. 2020, MNRAS, 496, 5503 CrossRefGoogle Scholar
Blagorodnova, N., Klencki, J., Pejcha, O., et al. 2021, A&A, 653, A134 Google Scholar
Dominik, M., Belczynski, K., Fryer, C., et al. 2012, ApJ, 759, 52 CrossRefGoogle Scholar
Kurfürst, P. & Krtička, J. 2019, A&A, 625, A24 Google Scholar
Kurfürst, P., Pejcha, O., & Krtička, J. 2020, A&A, 642, A214 Google Scholar
Hubová, D. & Pejcha, O. 2019, MNRAS, 489, 891 CrossRefGoogle Scholar
Iben, I. & Livio, M. 1993, PASP, 105, 1373 CrossRefGoogle Scholar
Ivanova, N., Justham, S., Chen, X., et al. 2013a, AAPR, 21, 59 Google Scholar
Ivanova, N., Justham, S., Avendano Nandez, J. L., et al. 2013b, Science, 339, 433 Google Scholar
Kasliwal, M. M., Bally, J., Masci, F., et al. 2017, ApJ, 839, 88 CrossRefGoogle Scholar
MacLeod, M., Macias, P., Ramirez-Ruiz, E., et al. 2017, ApJ, 835, 282 CrossRefGoogle Scholar
MacLeod, M., Ostriker, E. C., & Stone, J. M. 2018, ApJ, 863, 5 Google Scholar
Mason, E., Diaz, M., Williams, R. E., et al. 2010, A&A, 516, A108 Google Scholar
McDowell, A. T., Duffell, P. C., & Kasen, D. 2018, ApJ, 856, 29 CrossRefGoogle Scholar
Metzger, B. D. & Pejcha, O. 2017, MNRAS, 471, 3200 CrossRefGoogle Scholar
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C. 2014, ApJ, 786, 39 CrossRefGoogle Scholar
Paczynski, B. 1976, Structure and Evolution of Close Binary Systems, 73, 75 Google Scholar
Pejcha, O. 2014, ApJ, 788, 22 CrossRefGoogle Scholar
Pejcha, O., Metzger, B. D., & Tomida, K. 2016a, MNRAS, 455, 4351 CrossRefGoogle Scholar
Pejcha, O., Metzger, B. D., & Tomida, K. 2016b, MNRAS, 461, 2527 CrossRefGoogle Scholar
Pejcha, O., Metzger, B. D., Tyles, J. G., et al. 2017, ApJ, 850, 59 CrossRefGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Shu, F. H., Lubow, S. H., & Anderson, L. 1979, ApJ, 229, 223 CrossRefGoogle Scholar
Sukhbold, T., Ertl, T., Woosley, S. E., et al. 2016, ApJ, 821, 38 CrossRefGoogle Scholar
Suzuki, A., Moriya, T. J., & Takiwaki, T. 2019, ApJ, 887, 249 CrossRefGoogle Scholar
Tylenda, R., Hajduk, M., Kamiński, T., et al. 2011, A&A, 528, A114 Google Scholar