Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T15:35:49.847Z Has data issue: false hasContentIssue false

Masers in evolved star winds

Published online by Cambridge University Press:  24 July 2012

Anita M. S. Richards*
Affiliation:
UK ARC Node, JBCA, School of Physics and Astronomy, University of Manchester, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review summarises current observations of masers around evolved stars and models for their location and behaviour, followed by some of the many highlights from the past 5 years. Some of these have been the fruition of long-term monitoring, a vital aspect of study of stars which are both periodically variable and prone to rapid outbursts or transition to a new evolutionary stage. Interferometric imaging of masers provide the highest-resolution probes of the stellar wind, but their exponential amplification and variability means that multiple observations are needed to investigate questions such as what drives the wind from the stellar surface; why does it accelerate slowly over many tens of stellar radii; what causes maser variability. VLBI parallaxes have improved our understanding of individual objects and of Galactic populations. Masers from wide range of binary and post-AGB objects are accessible to sensitive modern instruments, including energetic symbiotic systems. Masers have been detected up to THz frequencies with Herschel and ALMA's ability to resolve a wide range of maser and thermal lines will provide accurate constraints on physical conditions including during dust formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Amiri, N., Vlemmings, W., & van Langevelde, H. J. 2011. A&A, 532, A149.Google Scholar
Assaf, K. A., Diamond, P. J., Richards, A. M. S., & Gray, M. D. 2011. MNRAS, 415, 1083.Google Scholar
Bains, I., Cohen, R. J., Louridas, A., Richards, A. M. S., Rosa-Gonzaléz, D., & Yates, J. 2003. MNRAS, 342, 8.Google Scholar
Bowen, G. H. 1988. ApJ, 329, 299.Google Scholar
Chapman, J. M. & Cohen, R. J. 1985. MNRAS, 212, 375.CrossRefGoogle Scholar
Chapman, J. M. & Cohen, R. J. 1986. MNRAS, 220, 513.CrossRefGoogle Scholar
Chen, X., Shen, Z.-Q., Imai, H., & Kamohara, R. 2006. ApJ, 640, 982.Google Scholar
Chiavassa, A. et al. 2010. A&A, 511, A51.Google Scholar
Cho, S.-H. & Kim, J. 2010. ApJ, 719, 126.Google Scholar
Cotton, W. D., Ragland, S., & Danchi, W. C. 2011. ApJ, 736, 96.CrossRefGoogle Scholar
Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J., & Townes, C. H. 1994. AJ, 107, 1469.Google Scholar
Decin, L., et al. 2010. A&A, 521, L4.Google Scholar
Desmurs, J.-F., Baudry, A., Sivagnanam, P., Henkel, C., Richards, A. M. S., & Bains, I. 2010. A&A, 520, A45.Google Scholar
Elitzur, M., Hollenbach, D. J., & McKee, C. F. 1992. ApJ, 394, 221.CrossRefGoogle Scholar
Etoka, S., & Diamond, P. J. 2010. MNRAS, 406, 2218.Google Scholar
Etoka, S., & Le Squeren, A. M. 1997. A&A, 321, 877.Google Scholar
Fonfría Expósito, J. P., Agúndez, M., Tercero, B., Pardo, J. R., & Cernicharo, J. 2006. ApJLett., 646, L127.CrossRefGoogle Scholar
Freytag, B., & Höfner, S. 2008. A&A, 483, 571.Google Scholar
Gerard, E., & Bourgois, G. 1993. Page 365 of: Clegg, A. W. & Nedoluha, G. E. (ed), Astrophysical Masers. Lecture Notes in Physics, BerlinSpringer Verlag, vol. 412.Google Scholar
Goldreich, P., Keeley, D. A., & Kwan, J. Y. 1973. ApJ, 179, 111.Google Scholar
Gray, M. D., Wittkowski, M., Scholz, M., Humphreys, E. M. L., Ohnaka, K., & Boboltz, D. 2009. MNRAS, 394, 51.Google Scholar
Hartquist, T. W. & Dyson, J. E. 1996. AP&SS, 245, 263.Google Scholar
Haubois, X. et al. 2009. A&A, 508, 923.Google Scholar
Herman, J., & Habing, H. J. 1985. A&AS, 59, 523.Google Scholar
Imai, H., Fujii, T., Omodaka, T., & Deguchi, S. 2008. PASJ, 60, 55.Google Scholar
Ivison, R. J., Seaquist, E. R., & Hall, P. J. 1994. MNRAS.Google Scholar
Kartje, J. F., Königl, A., & Elitzur, M. 1999. ApJ, 513, 180.Google Scholar
Kemball, A. J., & Richter, L. 2011. A&A, 533, A26.Google Scholar
Kemball, A. J., Diamond, P. J., Richter, L., Gonidakis, I., & Xue, R. 2011. ApJ, 743, 69.Google Scholar
Lewis, B. M. 2011. Page 629 of: Kerschbaum, F., Lebzelter, T., & Wing, R. F. (ed), Why Galaxies Care about AGB Stars II. ASP Conference Series, vol. 445.Google Scholar
Lucas, R. & Cernicharo, J. 1989. A&A, 218, L20.Google Scholar
Maeda, T. et al. 2008. PASJ, 60, 1057.Google Scholar
Matsumoto, N. et al. 2008. PASJ, 60, 1039.CrossRefGoogle Scholar
Murakawa, K., Yates, J. A., Richards, A. M. S., & Cohen, R. J. 2003. MNRAS, 344, 1. M+03.Google Scholar
Pashchenko, M. I., & Rudnitskii, G. M. 2004. Astronomy Reports, 48, 380.Google Scholar
Pataki, L., & Kolena, J. 1974. Bull. Am. astr. Soc., 6, 340.Google Scholar
Phillips, R. B., Sivakoff, G. R., Lonsdale, C. J., & Doeleman, S. S. 2001. AJ, 122, 2679.Google Scholar
Reid, M. J., & Menten, K. M. 1997. ApJ, 476, 327.Google Scholar
Richards, A. M. S., Yates, J. A., & Cohen, R. J. 1999a. MNRAS, 306, 954.Google Scholar
Richards, A. M. S., Yates, J. A., Cohen, R. J., & Bains, I. 1999b. Page 315 of: Le Bertre, T, Lèbre, A, & Waelkens, C (eds), IAU Symp. 191: Asymptotic Giant Branch Stars. ASP.Google Scholar
Richards, A. M. S., Elitzur, M., & Yates, J. A. 2011. A&A, 525, A56.Google Scholar
Richards, A. M. S. et al. 2012. A&A. in prep.Google Scholar
Royer, P. et al. 2010. A&A, 518, L145.Google Scholar
Rudnitskii, G. M., & Chuprikov, A. A. 1990. Soviet Astronomy, 34, 147.Google Scholar
Rudnitskij, G. M. 2008. Journal of Physical Studies, 12, 1301.Google Scholar
Shintani, M. et al. 2008. PASJ, 60, 1077.Google Scholar
Soria-Ruiz, R., Alcolea, J., Colomer, F., Bujarrabal, V., & Desmurs, J.-F. 2007. A&A, 468, L1.Google Scholar
Szymczak, M., Wolak, P., Gérard, E., & Richards, A. M. S. 2010. A&A, 524, A99.Google Scholar
van Langevelde, H. J., van der Heiden, R., & van Schooneveld, C. 1990. A&A, 239, 193.Google Scholar
Vlemmings, W. H. T., & van Langevelde, H. J. 2007. A&A, 472, 547–533.Google Scholar
Vlemmings, W. H. T., van Langevelde, H. J., Diamond, P. J., Habing, H. J., & Schilizzi, R. T. 2003. A&A, 407, 213224.Google Scholar
Weigelt, G. et al. 2000. Page 617 of: Léna, P. & Quirrenbach, A. (ed), SPIE Conference Series, vol. 4006.Google Scholar
Whitelock, P. A., Feast, M. W., & van Leeuwen, F. 2008. MNRAS, 386, 313.Google Scholar
Wiesemeyer, H., Thum, C., Baudry, A., & Herpin, F. 2009. A&A, 498, 801.Google Scholar
Winnberg, A., Engels, D., Brand, J., Baldacci, L., & Walmsley, C. M. 2008. A&A, 482, 831.Google Scholar
Wittkowski, M., Boboltz, D. A., Ohnaka, K., Driebe, T., & Scholz, M. 2007. A&A, 470, 191.Google Scholar
Woitke, P. 2006. A&A, 460, L9.Google Scholar
Wolak, P., Szymczak, M., & Gérard, E. 2012. A&A, 537, A5.Google Scholar
Yates, J. A., & Cohen, R. J. 1994. MNRAS, 270, 958.Google Scholar