Published online by Cambridge University Press: 06 January 2014
Using N-body simulations with planet-disk interactions, we present a mechanism capable of forming compact systems of hot super Earths such as Kepler 11. Recent studies show that outward migration is common in the inner parts of radiative disks. However we show that two processes naturally tip the balance in favor of inward migration. First the corotation torque is too weak to generate outward migration for planetary embryos less massive than 4M⊕. Second, system of multiple embryos generate sustained non-zero eccentricities that damp the corotation torque and again favor inward migration. Migration and accretion of planetary embryos in realistic disks naturally produce super Earths in resonant chains near the disk inner edge. Their compact configuration is similar to the observed systems.