Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T01:13:49.119Z Has data issue: false hasContentIssue false

The major merger origin of the Andromeda II kinematics

Published online by Cambridge University Press:  30 October 2019

Ivana Ebrová
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
Ewa L. Łokas
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
Sylvain Fouquet
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
Andrés del Pino
Affiliation:
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prolate rotation (i.e. rotation around the long axis) has been reported for two Local Group dwarf galaxies: Andromeda II, a dwarf spheroidal satellite of M31, and Phoenix, a transition type dwarf galaxy. The prolate rotation may be an exceptional indicator of a past major merger between dwarf galaxies. We showed that this type of rotation cannot be obtained in the tidal stirring scenario, in which the satellite is transformed from disky to spheroidal by tidal forces of the host galaxy. However, we successfully reproduced the observed Andromeda II kinematics in controlled, self-consistent simulations of mergers between equal-mass disky dwarf galaxies on a radial or close-to-radial orbit. In simulations including gas dynamics, star formation and ram pressure stripping, we are able to reproduce more of the observed properties of Andromeda II: the unusual rotation, the bimodal star formation history and the spatial distribution of the two stellar populations, as well as the lack of gas. We support this scenario by demonstrating the merger origin of prolate rotation in the cosmological context for sufficiently resolved galaxies in the Illustris large-scale cosmological hydrodynamical simulation.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

del Pino, A., Łokas, E. L., Hidalgo, S. L., & Fouquet, S. 2017, MNRAS, 469, 4999 CrossRefGoogle Scholar
Ebrová, I., & Łokas, E. L. 2015, ApJ, 813, 10 CrossRefGoogle Scholar
Ebrová, I., & Łokas, E. L. 2017, ApJ, 850, 144 CrossRefGoogle Scholar
Fouquet, S., Łokas, E. L., del Pino, A., & Ebrová, I. 2017, MNRAS, 464, 2717 CrossRefGoogle Scholar
Ho, N., Geha, M., Munoz, R. R., et al. 2012, ApJ, 758, 124 CrossRefGoogle Scholar
Kacharov, N., Battaglia, G., Rejkuba, M., et al. 2017, MNRAS, 466, 2006 CrossRefGoogle Scholar
Krajnović, D., Emsellem, E., den Brok, M., et al. 2018, MNRAS, 477, 5327 CrossRefGoogle Scholar
Łokas, E. L., Ebrová, I., Pino, A. d., & Semczuk, M. 2014, MNRAS, 445, L6 CrossRefGoogle Scholar
Łokas, E. L., Semczuk, M., Gajda, G., & D’Onghia, E. 2015, ApJ, 810, 100 CrossRefGoogle Scholar
Mayer, L., Governato, F., Colpi, M., et al. 2001, ApJ, 559, 754 CrossRefGoogle Scholar
McConnachie, A. W., Arimoto, N., & Irwin, M. 2007, MNRAS, 379, 379 CrossRefGoogle Scholar
McConnachie, A. W., & Irwin, M. J. 2006, MNRAS, 365, 1263 CrossRefGoogle Scholar
Nelson, D., Pillepich, A., Genel, S., et al. 2015, Astronomy and Computing, 13, 12 CrossRefGoogle Scholar
Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., et al. 2015, MNRAS, 449, 49 CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105 CrossRefGoogle Scholar
Tsatsi, A., Lyubenova, M., van de Ven, G., et al. 2017, A&A, 606, A62 Google Scholar
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, Nature, 509, 177 CrossRefGoogle Scholar