Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T00:48:09.323Z Has data issue: false hasContentIssue false

Magnetospheric Accretions and the Inner Winds of Classical T Tauri Stars

Published online by Cambridge University Press:  07 August 2014

Ryuichi Kurosawa
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel, 69, 53212 Bonn, Germany email: [email protected]
M. M. Romanova
Affiliation:
Department of Astronomy, Cornell University, Ithaca, NY 14853-6801, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent spectropolarimetric observations suggest that young low-mass stars such as classical T Tauri stars (CTTSs) possess relatively strong (~kG) magnetic field. This supports a scenario in which the final accretion onto the stellar surface proceeds through a magnetosphere, and the winds are formed in magnetohydrodynamics (MHD) processes. We examine recent numerical simulations of magnetospheric accretions via an inclined dipole and a complex magnetic fields. The difference between a stable accretion regime, in which accretion occurs in ordered funnel streams, and an unstable regime, in which gas penetrates through the magnetosphere in several unstable streams due to the magnetic Rayleigh-Taylor instability, will be discussed. We describe how MHD simulation results can be used in separate radiative transfer (RT) models to predict observable quantiles such as line profiles and light curves. The plausibility of the accretion flows and outflows predicted by MHD simulations (via RT models) can be tested against observations. We also address the issue of outflows/winds that arise from the innermost part of CTTSs. First, we discuss the line formations in a simple disk wind and a stellar wind models. We then discuss the formation of the conically shaped magnetically driven outflow that arises from the disk-magnetosphere boundary when the magnetosphere is compressed into an X-type configuration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alencar, S. H. P. & Basri, G. 2000, AJ, 119, 1881Google Scholar
Alencar, S. H. P., Bouvier, J., Walter, F. M., Dougados, C., Donati, J.-F., Kurosawa, R., Romanova, M., Bonfils, X., Lima, G. H. R. A., Massaro, S., Ibrahimov, M., & Poretti, E. 2012, A&A, 541, A116Google Scholar
Alencar, S. H. P., Teixeira, P. S., Guimarães, M. M., McGinnis, P. T., Gameiro, J. F., Bouvier, J., Aigrain, S., Flaccomio, E., & Favata, F. 2010, A&A, 519, A88Google Scholar
Ardila, D. R., Basri, G., Walter, F. M., Valenti, J. A. & Johns-Krull, C. M. 2002, ApJ, 567, 1013Google Scholar
Arons, J. & Lea, S. M. 1976, ApJ, 207, 914Google Scholar
Calvet, N. & Gullbring, E. 1998, ApJ, 509, 802Google Scholar
Camenzind, M. 1990, in Reviews in Modern Astronomy, Vol. 3, Reviews in Modern Astronomy, ed. G. Klare, 234CrossRefGoogle Scholar
Donati, J.-F., Bouvier, J., Walter, F. M., Gregory, S. G., Skelly, M. B., Hussain, G. A. J., Flaccomio, E., Argiroffi, C., Grankin, K. N., Jardine, M. M., Ménard, F., Dougados, C., & Romanova, M. M. 2011, MNRAS, 417, 472CrossRefGoogle Scholar
Donati, J.-F., Jardine, M. M., Gregory, S. G., Petit, P., Bouvier, J., Dougados, C., Ménard, F., Collier Cameron, A., Harries, T. J., Jeffers, S. V., & Paletou, F. 2007, MNRAS, 380, 1297CrossRefGoogle Scholar
Edwards, S., Fischer, W., Hillenbrand, L., & Kwan, J. 2006, ApJ, 646, 319Google Scholar
Edwards, S., Fischer, W., Kwan, J., Hillenbrand, L., & Dupree, A. K. 2003, ApJ, 599, L41CrossRefGoogle Scholar
Ferreira, J., Dougados, C., & Cabrit, S. 2006, A&A, 453, 785Google Scholar
Ghosh, P., Pethick, C. J., & Lamb, F. K. 1977, ApJ, 217, 578Google Scholar
Gregory, S. G., Matt, S. P., Donati, J.-F., & Jardine, M. 2008, MNRAS, 389, 1839Google Scholar
Harries, T. J. 2000, MNRAS, 315, 722Google Scholar
Hartmann, L., Hewett, R., & Calvet, N. 1994, ApJ, 426, 669Google Scholar
Herbst, W., Herbst, D. K., Grossman, E. J., & Weinstein, D. 1994, AJ, 108, 1906Google Scholar
Hussain, G. A. J., Collier Cameron, A., Jardine, M. M., Dunstone, N., Ramirez Velez, J., Stempels, H. C., Donati, J.-F., Semel, M., Aulanier, G., Harries, T., Bouvier, J., Dougados, C., Ferreira, J., Carter, B. D., & Lawson, W. A. 2009, MNRAS, 398, 189Google Scholar
Jardine, M. M., Gregory, S. G., & Donati, J.-F. 2008, MNRAS, 386, 688Google Scholar
Johns, C. M. & Basri, G. 1995, ApJ, 449, 341Google Scholar
Koenigl, A. 1991, ApJ, 370, L39Google Scholar
Königl, A., Romanova, M. M., & Lovelace, R. V. E. 2011, MNRAS, 416, 757Google Scholar
Kulkarni, A. K. & Romanova, M. M. 2008, MNRAS, 386, 673CrossRefGoogle Scholar
Kulkarni, A. K. & Romanova, M. M. 2009, MNRAS, 398, 701Google Scholar
Kurosawa, R., Harries, T. J., & Symington, N. H. 2005, MNRAS, 358, 671CrossRefGoogle Scholar
Kurosawa, R., Harries, T. J., & Symington, N. H. 2006, MNRAS, 370, 580Google Scholar
Kurosawa, R. & Romanova, M. M. 2012, MNRAS, 426, 2901CrossRefGoogle Scholar
Kurosawa, R. & Romanova, M. M. 2013, MNRAS, 431, 2673Google Scholar
Kurosawa, R., Romanova, M. M., & Harries, T. J. 2008, MNRAS, 385, 1931Google Scholar
Kurosawa, R., Romanova, M. M., & Harries, T. J. 2011, MNRAS, 416, 2623Google Scholar
Kwan, J., Edwards, S., & Fischer, W. 2007, ApJ, 657, 897Google Scholar
Li, L.-X. & Narayan, R. 2004, ApJ, 601, 414CrossRefGoogle Scholar
Lii, P., Romanova, M., & Lovelace, R. 2012, MNRAS, 420, 2020CrossRefGoogle Scholar
Long, M., Romanova, M. M., Kulkarni, A. K., & Donati, J.-F. 2011, MNRAS, 413, 1061Google Scholar
Muzerolle, J., Calvet, N., & Hartmann, L. 2001, ApJ, 550, 944Google Scholar
Petrov, P. P., Gullbring, E., Ilyin, I., Gahm, G. F., Tuominen, I., Hackman, T., & Loden, K. 1996, A&A, 314, 821Google Scholar
Reipurth, B., Pedrosa, A., & Lago, M. T. V. T. 1996, A&AS, 120, 229Google Scholar
Romanova, M. M., Kulkarni, A. K., & Lovelace, R. V. E. 2008, ApJ, 673, L171Google Scholar
Romanova, M. M., Long, M., Lamb, F. K., Kulkarni, A. K., & Donati, J.-F. 2011, MNRAS, 411, 915CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2004, ApJ, 610, 920CrossRefGoogle Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., & Lovelace, R. V. E. 2009, MNRAS, 399, 1802Google Scholar
Romanova, M. M., Ustyugova, G. V., Koldoba, A. V., Wick, J. V., & Lovelace, R. V. E. 2003, ApJ, 595, 1009Google Scholar
Rucinski, S. M., Matthews, J. M., Kuschnig, R., Pojmański, G., Rowe, J., Guenther, D. B., Moffat, A. F. J., Sasselov, D., Walker, G. A. H., & Weiss, W. W. 2008, MNRAS, 391, 1913CrossRefGoogle Scholar
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781CrossRefGoogle Scholar
Spruit, H. C. & Taam, R. E. 1993, ApJ, 402, 593Google Scholar
Symington, N. H., Harries, T. J., & Kurosawa, R. 2005, MNRAS, 356, 1489Google Scholar
Takami, M., Chrysostomou, A., Bailey, J., Gledhill, T. M., Tamura, M., & Terada, H. 2002, ApJ, 568, L53Google Scholar