Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T11:35:27.287Z Has data issue: false hasContentIssue false

Magnetism and the Invisible Man: The mysteries of coronal cavities

Published online by Cambridge University Press:  06 January 2014

Sarah Gibson*
Affiliation:
High Altitude Observatory/National Center for Atmospheric Research3080 Center Green Dr. Boulder, CO, 80027, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetism defines the complex and dynamic solar corona. Twists and tangles in coronal magnetic fields build up energy and ultimately erupt, hurling plasma into interplanetary space. These coronal mass ejections (CMEs) are transient riders on the ever-outflowing solar wind, which itself possesses a three-dimensional morphology shaped by the global coronal magnetic field. Coronal magnetism is thus at the heart of any understanding of the origins of space weather at the Earth. However, we have historically been limited by the difficulty of directly measuring the magnetic fields of the corona, and have turned to observations of coronal plasma to trace out magnetic structure. This approach is complicated by the fact that plasma temperatures and densities vary among coronal magnetic structures, so that looking at any one wavelength of light only shows part of the picture. In fact, in some regimes it is the lack of plasma that is a significant indicator of the magnetic field. Such a case is the coronal cavity: a dark, elliptical region in which strong and twisted magnetism dwells. I will elucidate these enigmatic features by presenting observations of coronal cavities in multiple wavelengths and from a variety of observing vantages, including unprecedented coronal magnetic field measurements now being obtained by the Coronal Multichannel Polarimeter (CoMP). These observations demonstrate the presence of twisted magnetic fields within cavities, and also provide clues to how and why cavities ultimately erupt as CMEs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Antiochos, S. K., MacNeice, P. J., Spicer, D. S., & Klimchuk, J. A. 1999, Astrophys. J., 512, 985Google Scholar
Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. 2010, Astrophys. J., 708, 314Google Scholar
Bak-Stȩślicka, U., Gibson, S. E., Fan, Y., Bethge, C., Forland, B., & Rachmeler, L. A. 2013, Astrophys. J., 770, L28CrossRefGoogle Scholar
Bak-Stȩślicka, U., Gibson, S. E., Fan, Y., Bethge, C., Forland, B., & Rachmeler, L. A. 2014, IAU S300 ProceedingsGoogle Scholar
Berger, M. A. & Field, G. B. 1984, J. Fluid Mech., 147, 133Google Scholar
Dove, J., Gibson, S., Rachmeler, L. A., Tomczyk, S., & Judge, P. 2011, Astrophys. J., 731, 1Google Scholar
Fan, Y. 2012, Astrophys. J., 758, 60Google Scholar
Forland, B. F., Gibson, S. E., Dove, J. B., Rachmeler, L. A., & Fan, Y. 2013, Solar Phys., doi:10.1007/s11207-013-0361-1, Online FirstGoogle Scholar
Forland, B. F., Gibson, S. E., Dove, J. B., & Kucera, T., 2014, IAU S300 ProceedingsGoogle Scholar
Fuller, J. & Gibson, S. E. 2009, Astrophys. J., 700, 1205Google Scholar
Gibson, S. E. & Fan, Y. 2006, J. Geophys. Res., 111Google Scholar
Gibson, S. E., Foster, D., Burkepile, J., & de Toma, G. A. S. 2006, Astrophys. J., 641, 590Google Scholar
Gibson, S. E., Kucera, T. A., Rastawicki, D., Dove, J., de Toma, G., Hao, J., Hill, S., Hudson, H. S., Marque, C., McIntosh, P. S., Rachmeler, L., Reeves, K. K., Schmieder, B., Schmit, D. J., Seaton, D. B., Sterling, A. C., Tripathi, D., Williams, D. R., & Zhang, M. 2010, Astrophys. J., 723, 1133Google Scholar
Gibson, S. E. & Low, B. C. 1998, Astrophys. J., 493, 460Google Scholar
Hudson, H. S., Acton, L. W., Harvey, K. A., & McKenzie, D. M. 1999, Astrophys. J., 513, 83Google Scholar
Kucera, T. A., Gibson, S. E., Schmit, D. J., Landi, E., & Tripathi, D. 2012, Astrophys. J., 757, 73Google Scholar
Li, X., Morgan, H., Leonard, D., & Jeska, L. 2012, Astrophys. J. Lett., 752, L22Google Scholar
Low, B. C. & Hundhausen, J. R. 1995, Astrophys. J., 443, 818Google Scholar
Marqué, C. 2004, Astrophys. J., 602, 1037Google Scholar
Rachmeler, L. A., Gibson, S. E., Dove, J. B., DeVore, C. R., & Fan, Y. 2013, Solar Phys., doi:10.1007/s11207-013-0325-5, Online FirstGoogle Scholar
Reeves, K. K., Gibson, S. E., Kucera, T. A., & Hudson, H. S. 2012, Astrophys. J., 746, 146Google Scholar
Savcheva, A., Green, L., van Ballegooijen, A., & DeLuca, E. 2012, Astrophys. J., 759, 105Google Scholar
Schmit, D. J. & Gibson, S. E. 2011, Astrophys. J., 733, 1CrossRefGoogle Scholar
Schmit, D. J. & Gibson, S. E. 2013, Astrophys. J., 770, 35Google Scholar
Schmit, D. J. & Gibson, S. E. 2014, IAU S300 proceedingsGoogle Scholar
Schmit, D. J., Gibson, S. E., Tomczyk, S., Reeves, K. K., Sterling, A. C., Brooks, D. H., Williams, D. R., & Tripathi, D. 2009, Astrophys. J. Lett., 700, 96Google Scholar
Tandberg-Hanssen, E. 1974, Geophysics and Astrophysics Monographs, 12Google Scholar
Taylor, J. B. 1974, Phys. Rev. Lett., 33, 19Google Scholar
Tomczyk, S., Card, G. L., Darnell, T., Elmore, D. F., Lull, R., Nelson, P. G., Streander, K. V., Burkepile, J., Casini, R., & Judge, P. G. 2008, Solar Phys., 247, 411CrossRefGoogle Scholar
Waldmeier, M. 1970, Solar Phys., 15, 167Google Scholar
Wells, H. G. 1897, The invisible man, a grotesque romance (Bartleby.com, online edition, 2000), 84–85Google Scholar
Woltjer, L. 1958, Proceedings of the National Academy of Science, 44, 489Google Scholar
Zhang, M. & Low, B. C. 2005, Ann. Rev. of Astron. and Astrophys., 43, 103Google Scholar